AD-A172 445 THE COMPLEXITY OF PARALLEL RLGORITHMSCU> STANFORD UNIV 11
CA DEPT OF COMPUTER SCIENCE R _ANDERSON NOV 83
STAN-CS-86-1092 NO0#14-85-C-9731

UNCLASSIFIED F/6 9/2

NL

sy

s o S Sov R0 A N IR SOIC & L ' Ve AL ST

LB R Ay LS

¥

-

e -

o - e w e -

5.-250%
Imm

OH o
Ada
E ..

K EEERFTI

2

16

—
—
—
]

L4

0

S———
e ——
———
——
———

125

-y v v T T

- .

A AN,

e e gL

ot B Bhen B 0% ¥0n S P gt B4 St stm o wie B e 2%

gl o g 50 SN SR 2 A S 20 3 0t S e 2 40 Bad Whot Wt Bl *nuh b eSS i i SNt N0l S s

November 1985 Report No. STAN-CS-86-1092

)

The Complexity of Parallel Algorithms

by

Richard Anderson D I IC

' ELECTE
0CT 0 1 88

R

AD-A172 445

Department of Computer Science

Stanford University
Stanford, CA 94305

DISTRIBUTION
ot ..SJA-_’-'EA‘-M .
oved for public teleasey :
Distributiog Unlimiteq 4

R §5-C —¢ 73/

. LN e, e » L., -
i R '- f { “'.-',-"- LY

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

T e R g B e B s e ey T NN
TR N Ty ﬁ’ o of,‘!., .’q..’ __f~.~\3$($f. e ~J~f~. \."_..-.‘..\ ¥

VAT RN NV VR XYY S,
-.-,:\:..II,.&',..:;?-.:.-\"\..z** u »
NSNS DS ..“*'J“.'A o) *?

Stanford University
Department of Computer Science

The Complexity of Parallel Algorithms

by

Richard Anderson

This research was supported in part by a National Science Foundation Graduate Fellowship, an
IBM Faculty Development Award, and National Science Foundation grant DCR-8351757. Much LA
of this work was done in collaboration with my advisor, Ernst Mayr. He was also supported in %
part by ONR contract N00014-85-C-0731. N

g i e b e By A" 8 in 't % R ia Pla ph i "yt RiatAan & g g gt 'Y

Table of Contents

1. Introduction . . . e e e e e e e e e e e .
1.1. Parallel Computatlon
1.2. Preliminaries
1.2.1. The P-RAM Model

. 1.2.2. Fast Parallel Algorithms 3
1.2.3. The Parallel Computation Thesis C e 4
) 1.2.4. P-Completeness . . . e e e e e e T ~PY

1.2.5. The Circuit Value Problem A C';‘l
1.3. Parallel and Sequential Algorithms Ce e 7 ‘::{-'
1.4. Techniques for Parallel Algorithms 8 :::
1.5. Coping with P-Completeness 9 :
1.6. Notation and Conventions ¢) K

2. P-Complete Algorithms T § | Fi:.
2.1. Introduction L. . § | o
2.2. Definition of P- (’omplctcness for AI[,orlt.hms R V' O
2.3. Finding a Maximal Path O L | ~
2.3.1. Dircected Lextain Maximal Path R | 4
2.3.2. Planar Lexmin Maximal Path 16 g
2.4. Finding a Maximal Sct of Disjoint Paths S . :'.'::-."
2.5. Neighborhood Heuristics for NP-Complete Problems A | -;:
2.6. Additional P- Complcte Algorithms e e e e e e 22 -
2.7. Discussion e 2 | b

3. Path Problems \:-
3.1. Introduction . . . SR . N
3.2. Finding a Long Pal || ina (‘. :\ph 1 ::‘:_
3.3. Finding a Maximal Set of Disjoint Paths28 -
3.4. I"inding a Maximum Set of Disjoint Paths30 "
3.5. The Maximal Path Problem . . . T ¥ :::.‘
3.5.1. Maximal Path Algorithm for Boumlul chrec Graphs I & a2
3.5.2. Maximal Path Algorithm for General Graphs I 1. -_}
3.6. Depth First Search I 3 -
37.Discussion o0 v ¢ X

4. Approximating P- Complete Problems O 1 ::'f.-'
4.1. Introduction &1 :_:j:
4.2. The High Degree Qubgmph Problcm e e e e e e R 1 Ry
41.3. Approximations to the Iligh Degree Subgraph Problem 48
4.4. Finding a High Degree Subgraph T 3 | f
4.5. Finding a Maximum Density Subgmph . | o
4.6. Number Problems85 ;:_ '
7. First Fit Bin Packing5 "'
4.8. Approximating an FF'D packmg OO ¢ 1]

4.9. Discussion v e e e e e e e e . e e e66 .
Bibliography o oo oo 6T s
’

Abstract

« T

This thesis addresses a number of theoretical issues in parallel computation. There

are many open questions relating to what can be done with parallel computers and what 5
are the most cffective techniqgues to use to develop parallel algorithms. We examinesvarious 5-
problems in hope of gaining insight to the general questions. X

One topic that is investigated is the relationship between sequential and parallel al- b’
gorithms. We introduceithe concept of a P-complete algorithm to capture what it means ¢
for an algorithm to be inhcrently sequential. We show that a number of sequential greedy B
algorithms are P-complete, including the greedy algorithm for finding a path in a graph. 2
Ilowever, a problem is not necessarily difficult if an algorithm to solve it is P-complete. In ¥
some cases, the natural sequential algorithm is P-complete but a different technique gives

a fast parallel algorithm. This shows that it is necessary to use dilferent techniques for
parallel computation than are used for sequential computation. ;e
We give fast parallel algorithms for a number of simple graph theory problems The
algorithms illustrate a number of different techniques that are useful for parallel algorithms.
The most important results are that the maximal path problem can be solved in RNC and
that a depth first search tree can be constructed in O(n!/2* <) parallel time. This shows

| " Y n,l'! . I.l

that substantial speed up is possible for both of these problems using parallelism. ;‘
The final topic that we address is parallel approximation of P-complete problems. :
P-complete problems probably cannot be solved by fast parallel algorithms. We give a v
number of results on approximating 1>-complete with parallel algorithms that are similar :
to results on approximating NP-complete problems with sequential algorithms. We give :
upper and lower bounds on the degree of approximation that is possible for some problems. i
We also investigate the role that numbers play in P-complete problems, showing that some 3
P-complete problems remain diflicult even if the numbers are small. N
ALCEenN For iy
NTIS CRag Y i

LTIC TAB 0
Ua:a'_.:-.ou“ced 0
ustitication "
By MIA. - opny

Dist. lbuttonl

Avaitability Codes

o .. o L. e ‘
Avail and]or

Spi-ceal, v
: /

it

N
|3
!

.
.
L.
»

T R N A T RIS TR IR ATRRATITE e - -
-.’..I'! ‘s --_-.-.,-*. -._-’_.-._._ . LIS « ..._._.. Viene s .-.-‘
S5 RS SRV NN T

RO LT LR LT IR PO WY Ty e i i gt tte e 'y f ' 2l A A AR A Y \

Chapter 1 Introduction

1.1. Parallel Computation

Parallel computation offers substantial opportunities for performing computations
faster than they can be done with just a single processor. In some cases, problems can
be decomposed into independent subproblems, with each subproblem being solved simul-
tancously. Ideally, this allows a speed up in the computation proportional to the number
of processors eniployed. There are, however, many difficulties in parallel computation.
Some of the difficulties are technological, relating to such issues as processor synchro-
nization, resource contention, and wiring together processors. Other difficulties are more
algorithmic in nature. These include the partitioning of problems into subproblems and
the programming of parallel machines.

There is a substantial difference between parallel and sequential algorithims. Sequen-
tial algorithms can take advantage of many intermediate results. Processing can be done
one step at a time, basing each decision on the previous decisions made. However, for a
parallel algorithm to be efficient, the problem must be decomposed so that progress can
be made on many subproblems at the same time. This often requires a very different
approach than is used in sequential algorithms.

Two of the most important questions relating to parallel computation are: What
are the problems that can be solved by fast parallel algorithms, and what general tech-
niques work for parallel algorithms. Essentially the questions are “what” and “how.” The
classilication problem is to identify the problems that can be effectively parallelized and
also to wdentify the problems that require sequential processing. The other problem is to
identify general algorithmic techniques. There are a number of general techniques that
are commonly employed in sequential algorithms, such as divide and conquer and dynamic
programmmang. It is important to develop a similar set of approaches for parallel algorithms.
There are currently just a few techniques used in parallel algorithms. It is hoped that new
techniques can be developed.

The goal of this thesis is to study particular problems to gain insight into these general
questions. We take a theoretical approach by adopting an abstract model of parallel
computation. The model of computation that we use is thec P-RAM model. This is an
idealization of a parallel machine. Most of the problems that we look at are very simple
from the sequential point of view. llowever, these problems turn out to be a challenge to
parallclize and illustrate many of the issues involved in parallel computation.

The study of parallel computation is very broad, and this thesis addresscs issues re-

lated to only a portion of it. We are only concerned with what could be called “inherent
parallelism.” This refers to the parallelism possible in an ideal computer, where unit cost
communication is available between all processors and memories, and there are no con-
straints imposed by physical layout. We neglect such issues as communication complexity
and the layout of processors, although they are important, both in theory and in practice.

'

- -
4
Sy

-
-
S

h 3 4
N

AL

Sl

o

o

v %% :l AR

.
)
P 'l.

.
’
.

PUr——
Cete"y

()
v b,

v
. d
r A

%

T8, P, G 5 Gy
WX AEOK

%
13

/

o 2, 48

’

I
a

.
L 4

ol il

T
-

The next section covers some preliminary results that we base our work on. The dis-
cussion covers our model of parallel computation and also covers some of the methods that
arc available to show that problems arc inherently sequential. Following the preliminary
material is a discussion of some of the gencral issues in parallel computation. This thesis
has three chapters of technical results. Chapter 2 is concerned with the relation between
sequential and parallel algorithms. 1t discusses ways to show that certain algorithms are
inherently sequential. Chapter 3 discusses some algorithms for certain path problems.
The algorithms illustrate a number of important gencral techniques. Finally, Chapter 4
discusses ways to approximate problems that probably cannot be solved by fast parallel
algorithms. The chapter shows that there is a high degree of similarity between parallel
and sequential complexity theory.

1.2. Preliminaries

A substantial amount of work has been done in studying models of parallel computa-
tion in order to identify the appropriate theoretical basis for parallel computation. In this
scction we discuss some of the results that are directly relevant to our work. We do not
attempt to give a complete survey of the various models of parallel computation. There

are a number of papers that survey the work that has been done, including papers by Cook
[C1], and Hoover and Ruzzo [HR].

1.2.1. The P-RAM Model

The standard model of synchronous parallel computation is the I'>RAM (Parallel Ran-
dom Access Machine). This model captures the intuitive idea of what a parallel machine
is. The P-RAM model has been described by a number of authors [FW]| [G2]. A P-RAM
consists of a sct of processors, P, ..., P, and a set of global memory cells, My, ..., M,,.
ISach processor is & RAM |ALIU], with its own local memory. A processor can perform
some standard arithmetic operations and can access its own memory with direct or indi-
rect addressing. A processor can also communicate with the global memory by reading a
value from or writing a value to any global memory cell. The global memory accesses are
assumed to take unit time. This is one of the major idealizations of the P-RAM model. In
a real parallel computer, onc would expect that the access time is related to the number
of processors. A P-RAM has a single program that all processors exccute one step at a
time. Fach processor has a register which contains its processor munmber and instructions
may depend on this number, so different processors may do different things on the same
instruction. Some of the global memory cells are designated for the input to the problem
and some of them are for the outputs. The time taken for an algorithm is the number of
instructions that are exccuted. The space is the sum of the number of processors and the
number of memory cells.

There are a number of variants of the P-RAM model that handle concurrent reads and
concurrent writes to the global memory cells differently. The major variants are exclusive
read, exclusive write (EREW), concurrent read, exclusive write (CREW) and concurrent

of
-

Y rg
R

"
e
R o

[N AL SRR

o~
o
O

A

s v e

| DY LA
.v ;f’-"-‘_/.",(

.
r
.

-y o
f
.

“* e
(A

(]
re

1

oK

read, concurrent write (CRCW). For the latter model, there are additional variants on
the nature of concurrent writes. There is a difference in the power of the various types
of P-RAM. For example, it is trivial to compute the OR of n inputs with a CRCW P-
RAM in constant time, while on a CREW P-RAM the problem requires 2(logn) time
[CD]. There are also scparation results for the various different types of CRCW P-RAMS
[FRW]. However, the differences in the power of the modecls is not that great. It is not
hard to show that a single instruction of an n processor, m memory CRCW P-RAM (any
variant) can be simulated by an EREW P-RAM with nm processors and nm memories in
O(logn -+ log m) time. In this thesis, we use the CREW model. However, we arc not that
interested in the exact time or processor bounds of our algorithms, so our results carry
over to the other variants of the P-RAM model.

1.2.2. Fast Parallel Algorithms

In this thesis, we deal with problems that can be solved by “fast” parallel algorithms

that use a “reasonable” number of processors. The generally accepted definition of fast
and reasonable is polylog (O(log'r n)) parallel time and a polynomial number of processors
|[P]. This class is commonly referred (o as NC. The problems in NC are problems for
which an exponential speedup is possible using parallelism; these problems can have their
running times reduced from polynomial to polylog.
y One of the reasons why NC is broadly accepted as the appropriate class te use in the
study of parallelism is that it is a very robust complexity class. NC remains the same
whether it is defined in terms of any variant of the P-RAM modecl, or in terms of some
other models, such as uniform circuits [B][Ru}. More relined classes, such as problems that
. can be solved in O(log n) or O(log? n) parallel time depend upon the particular model of
computation that is used. Fven the weakest model of a P-RAM is an idealization of the
type of machine that could actually be built. To convert the model to a more realistic
model, such as a bounded degree network [Sc|, a slow down of a factor of at least logn
is needed. The theorctical models, however, are accurate models when factors of logn
are ignored. The advantage of NC is that it allows us to ignore the factors of logn that
separate the various models.

The class RNC is the probabilistic analogue of NC. It denotes the set of problems
that can be solved with a probabilistic >-RAM in polylog tinie with a polynomial number
of processors. There are several ways that randomness can be introduced into the P-RAM
nmodcl. For example, the processors can be given coins to {lip or certain memory locations

IR

can be assigned random values at the start of the program’s exccution.

One of the drawbacks of the class NC is that many NC algorithms are reasonable
only when the number of processors is very large. The basic problem is that log® n is not

¢ a slowly growing Minction when n is small. The lollowing table shows how large n must
k
y be so that n > log™ n for several values of k.
o
o

n

16
982
65,536
5,690,333
621,201,921

For example, if the constant factors are the same, an O(log®n) algorithm is not
better than an O(n) algorithm until n is about one thousand. The size of n where an
O(log3 n) algorithm is superior to an O(n'/2) algorithm is astronomical. Showing that a
problem is in NC is just the first step to getting a practical algorithm for the problem.
The problems in NC can in principle be solved by fast parallel algorithms; they are not
inherently sequential.

1.2.3. The Parallel Computation Thesis

Parallel time is closely related to sequential space. The parallel computation thesis is:
For all reasonable models of computation, parallel time is polynomially related to sequential
space [G2]. The equivalence of parallel time and sequential space has been proved for a
number of specific models including alternating Turing machines |CKS], circuits [1B] and
P-RAMS [IF'W| [Wy]. Let PTIMI(T(n)) denote the class of problems that can be solved in
O(T'(n)) time on a CREW P-RAM and DSPACE(S(7)) denote the class of problems that
can be solved in O(S(n)) space on a multitape Turing machine. (For sequential space, only
the work space is counted; the input is given on a separate read-only tape). It is shown
in [FW] that PTIME(T(n)) ¢ DSPACE(T2(n)) and DSPACE(S(n)) ¢ PTIME(S(n)) for
S(n) > logn.

The relationship between NC and Turing machine space is:

DSPACE(logn) C NSPACE(logn) C NC C | | DSPACE(log* n).
k>0

To show that DSPACIE(logn) C NC, it is necessary to show that a Turing machine that
uses O(logn) space can be simulated with a P-RAM with polynomial size. The size is
polynomial since the number of possible states of the O(logn) space Turing machine is
O(n*). A similar proof can be used to show that an O(logn) space non-deterministic
Turing machine can be simulated by a P-RAM with polynomial size. The space efficient
simulations of a polylog time P-RAM do not in general give polynomial time algorithims.
However, NC C P, since a polynomial number of processors can be simulated by a single
processor with a polynomial slowdown.

e 4 'r‘a'l.-" WM

TETITTEEESI F IV vy A\ VLN S g

“of

P D S A A)

LY AL St A e &

< LA A

1.2.4. P-Completeness

One of the most difficult areas of complexity theory is lower bounds. Very few non-
trivial lower bounds are known for general models of computation; this holds for parallel
computation as well as for sequential computation. A different approach, which has proved
far more successful is to show problems to be at least as difficult as other problems. The
notion of completeness is a way to identify the most difficult problems in a particular class.
A problem A is complete for a class C if it is in C and all problems in C are reducible to it
by sonie appropriate form of reduction. If the problem A could be solved efficiently, then
all problems in C could be solved cfficiently by using the solution for A.

The parallel computation thesis allows us to apply results on space complexity to
parallel computation. We show problems to be log-space complete for P (P-complete) to
provide evidence that they are diflicult to parallelize. A problem is log-space complete for
P if it is in P and all problem in P are reducible to it by log-space reductions. A problem
A is log-space reducible to a problein B if there exists a log-space Turing machine that
converts instances of A into equivalent instances of B. Log-space reducibility is transitive,
i.c., il Ais reducible to B and B is veducible to (7, then A is reducible to . This means that
if a P-complete problem could be solved in ((log* n) space, then P C DSPACE(log® n).

If & problem is P-complete, then it is unlikely that there is a fast parallel algorithm for
it. Log-space transformations can be done in O(log n) time on a P-RAM using a polynomial
number of processors, so the P-complete problems are the most difficult problems in P to
parallelize. If a P-complete problem is found to be in NC, then P - NC and P C
Uk>oDSPACE(log®). If this were the case, then all problems in P could be solved very
fast in parallel and could be solved sequentially using very little space. Both of these are
considered to be very unlikely. There is of course, no known proof that P / NC, as there
is no known proof that P £ NP.

Many problems are known to be P-complete. An important P-completeness result is
that the problem of computing the value of a circuit given its inputs is P-complete [Lad].
We discuss this problem in the next section. Other important P-complete problems are
network flow [GSS], linear programming [DLR], and unilication [DKM]. A list of currently
known P-complete problems has been compiled by loover and Ruzzo [HR].

P-completeness is defined in terms of language recognition, so according to the def-
inition, we are restricted to discussing problems that have a yes/no answer. However, it
is often the case that we are interested in computing functions instead of just recognizing
languages. For example, in the network flow problem, we wish to compute the value of
the maximum flow in a network. One way to extend the definition of P-completeness
to functions is to introduce a language associated with the function. For a function
S :{0,1}* — {0,1}", we deline the language

Ly = {{z,k,a) : The k-th bit of f(z) is a}.
By decfinition, the problem of computing f is P-complete if the problem of recognizing Ly

is P-complete. The proof that network {low is I’-complete (GSS] actually shows that the
problem of computing the least signilicant bit of the maximum flow is P-complete.

A,

o Y

.
‘h

v
Bt
D)

- %N
el

Yy

»
0

4] ‘-,‘v.;l s »)

' -.' ., n,}-.zo'-'. Y

45 4‘.'..l'"

.-
L]

i

\" = Illv}r{*i r

e
B

’ Moty e

"f.':'.‘i.'b_'. :n A'l '

DR)
y 1 2y
o« . h

.
0

-

4 4
3 1.2.5. The Circuit Value Problem g
The fundamental P-complete problem is the circuit value problem. The circuit value
r problem is: Given a circuit with values for its inputs, compute the value of its output. 3
) The circuit value problem is clearly in P, since it can be solved by evaluating the gates p
one at a time. Intuitively, a problen: is P-complete if it is sufliciently powerful to simulate 4
the computation of any polynomial time bounded Turing machine on a given input. The C
proof that the circuit value problem is P-complete is a generic reduction from an arbitrary
- problem in P.
- A problem can be shown to be P-complete by giving a log-space reduction from a
- known P-complete problem to it. The circuit value problem is by far the most frequently .
. used problem for P-completeness proofs. The reason for this is that the circuit value prob-)
lem scems to capture the complexity of P-completeness and the structure of the problem
N very often makes it convenient to use in reductions. Its role in P-completeness is similar to .
; the role of satisfiability in NP-completeness. We now give a precise definition of the circuit 2
e value probiem. A circuit is a string 0 == 0y,..., 8, where §; is either an input, (0-INPUT)
- or 1-INPUT), or a gate AND(7, k), OR(7,k), or NOT(5). The inputs for a gate are lower N
numbered gates, thus the gate 8, = AND(7, k) reccives its inputs from the gates §; and i
- Br with 3 <7z and k < 2. The circuit value problem is to determine if a given string is in
::f the language of all circuits that evaluate to true.
_: There are a number of important variants of the circuit value problem that are P-
- complete. The circuit value problem is P-complete for any collection of gates that form
a complete basis, for example {NOT, OR} or {NAND}. The circuit value problem is also
-l P-complete for monotone circuits, i.c., if the logical gates are AND and OR [G]. A sccond
. version of the circuit value problem that is P-complete is the planar circuit valie problem N
5 [€" . The problem is to evaluate a circuit that is laid out on the plane without wires :
o crossing. The inputs are assumed te be along one edge of the circuit. The monotone -
planar circuit value problem, however, is apparently not P-complete, since it can be solved
2 in NC [DC] [Ru]. .
3 There are a number of minor restrictions of the circuit value problem that are also .
"_j P-complete. These are mentioned because they make a number of P-completeness proofs ..
N cleancr. The first restriction is that the gates are limited to having fanout at most two. o
It is not hard to simulate arbitrary fanout with a fanout two circuit by introducing extra
% gates. In all of the P-completeness proofs we give in this thesis we assume the logical gates _?
- arc restricted to fanout two. We also assume that the inputs (0-INPUT and I-INPUT), -
- have fanout one. A sccond restriction is that the circuit can be assumed to be laid out -
v in levels, with cach gate connected only to gates on adjacent levels. The plinar circuit N
value problem remains P-complete with this restriction even when the gates are restricted i
‘ to NOT and OR (a onc input OR is allowed). This variant is used in a proof in the next
Y chapter. hS
R P-complcteness proofs are very similar to NP-completeness proofs. First, the problem 3
x must be shown to be in P. In most cases of interest, this is obvious, linear programing :"
being a notable exception. For a reduction from the circuit value problem, it is nccessary
4 to simulate a circuit. This entails having a way to represent the values true and false. It is -
", also necessary to be able to combine values to simulate the gates. Often, the diflicult part :::
. =
2 6 -

of a P-completeness proof is fanning out values. To fan out a value, it must be replicated
so that two other gates can reccive the value. A technical detail in P-completeness proofs
is to make sure that values arc only propagated in the proper direction. If care is not
taken, values may be propagated backwards, interfering with earlier gates. A final issuc in
P-completeness proofs is that the reduction must be a log-space reduction. The types of
local transformations that are commonly done in NP-completeness proofs can be done in
log-space. The proofs that a transformation can be done in log-space is generally omitted
from a P>-completeness proof.

1.3. Parallel and Sequential Algorithms

There are essentially two ways to design a parallel algorithin. One can cither start with
a sequential algorithm for the problem and attempt to adapt it to a parallel machine, or one
can start from scratch and design a parallel algorithm. The first approach is appcealing lor
a number of reasons. There has been a vast amount of work done on developing sequential
algorithms, so it is hoped that some of it carries over to parallel computation. Some general
techniques in sequential computation, such as divide and conquer, involve partitioning
problems into independent subproblems. Some of these algorithms have natural parallel
analogucs. Therc are a [ew theoretical results that show that certain classes of computation
can be converted to parallel algorithins. or example, it is known that programs that
compute certain polynomials can be converted to fast parallel algoriths [VSBR]. There
is also a practical interest in converting sequential algorithms to parallel algorithms. Over
the years, many programs have been written for sequential computers. Many people want
compilers that will compile the code for parallel machines, to avoid hawving to rewrite the
code. In certain domains, such as numerical computation, this approach is likely to be at
least partially successful. It is possible to identify a certain amount of parallelism in vector
computations automatically.

The approach of directly converting sequential algorithms to parallel algorithms has
its limitations. Some sequential algorithims process information in a way that seems to be
inherently scquential. Fach step may directly depend upon the previous step, so it is not
possible to decompose the computation into independent sub-computations. In Chapter 2,
we investigate the relationship between sequential and parallel algorithms. We introduce
the notion of a P-complete algorithm. This gives us a way to identify inherently sequential
algorithms. A P-complete algorithm cannot be converted to a fast paraliel algorithm unless
P - NC. We give a number of examples of simple algorithms that are ’-complete.

Showing that an algorithm is inherently sequential does not show that the problem
that the algorithmn solves is necessarily diflicult. There are a number of problems where
the natural sequential algorithm is P-complete, but a diflerent approach can be used to
construct a fast parallel algorithm. In cases where an algorithm is P-complete, it is nec-
essary to start from scratch to attempt to find a fast parallel algorithm. This shows that
in some cases completely different approaches are needed for parallel algorithins than are

uscd for sequential algorithms.

--'-!“
AR R

ettt

AR

Yl b e S 0 N
et

i, Ay
2

"4
v 1 .
RS

of

etely)

L A]
o e S
AR AL R

v

e
3

VAL S
A
"‘_$ ${‘rl“r{

—

P
e S

2,
(4

P :
.' y '
y :
;.. 1.4. Techniques for Parallel Algorithms :
)

! The techniques that are used for parallel algorithms are quite limited. The technique :
R that is most commonly used is referred to as path doubling. The essential idca in path .
g doubling is that at cach phase a processor doubles the amount of information that it has. 3
-f: For example, in a sunnmation algorithm, each step doubles the number of values for which R
e a processor has the sum. A sccond example is traversing a linked list. There is a processor o
associated with cach item in the list, and the processor has a pointer to another item. Each ‘

- step of the algorithm doubles the distance that is covered by each pointer. Path doubling o
2 also appears in more sophisticated guises. For example, it is used by Helmbold and Mayr .
- in their algorithm to compute an optimal two processor schedule [HM2]. ¥
" One of the promising developments in parallel algorithms is that new techniques are \
being discovered. One of the major new techniques is what we refer to as the iterated

. improvement strategy. Instead of secking to solve the problem in one shot, an iterated "
_.- improvement algorithm builds its solution in a number of phases. Often, cach phase of R
- an iterated improvement algorithm reduces the number of candidates for the solution by N
:}' a constant fraction, so that there are only O(logn) phases. One of the first uses of this by
approach was by Karp and Wigderson in their maximal independent set algorithm [KW]. i

? A maximal independent set in a graph is a maximal set of vertices with no edges between N
-1 them. The algorithm maintains a set I which is eventually a maximal independent set. At :
:'-: cach phase, the number of vertices that are not in [or adjacent to members of [is reduced -

~ significantly. A second important algorithm that uses iterated improvement is the Karp-

Upfal-Wigderson matching algorithm [KUW]|. This algorithm finds a perfect matching by]

N identifying subsets of the edges that are contained in a perfect matching. Once edges are ;
. put into the solution set, they are not removed. This method is in sharp contrast to the .
.;" sequential algorithms for matching which move edges into and out of the solution [I’S]. N
- The use of randomness has been gaining popularity in parallel algorithms. Quite often ”
] it is possible to generate certain objects with random choices, but it seems more difficult .
& to do it deterministically. A typical situation is for random choices to be good with high -
= probability, but to guarantee that the choices are good requires basing cach choice on :‘_
v the other choices made. Randomness seems to reduce decisions from being global to being :
> local. Probabilistic techniques are often used in conjunction with the iterated improvement
' strategy. In some cascs, it is possible to get rid of the randomness by showing that a small -
-'_'. saunple space is sufficient, and then searching the sample space exhaustively [KW]|([Lu]. \
In Chapter 3 of this thesis, we look at parallel algorithms for some path problems D
- and use some of these techniques. The path problems that we look at can be solved by N
a simple sequential algorithms but are more diflicult to solve with fast parallel algorithms. o
Much of our work on path problems was motivated by the probiem of depth first search.

': A related problem is to compute a maztmal path. A maximal path is a simple path that
! cannot be extended. Our major results of the chapter are that a maximal path can be 3
: found by an RN C algorithm, and that a depth first scarch tree can be constructed in time N
2 O(nl/”') for an n vertex graph. We also give algorithms for some other path problems. .
» The algorithms employ a number of the new techniques. None of them depend directly on .
; path doubling. N
N ;
'y 8 A

1.5. Coping with P-Completeness

P-complete problems probably cannot be solved by fast parallel algorithms. Ilowever,
it is still important to see what can be done with these problems using parallelism. One
approach is to look for algorithms that are substantially faster than the known scquential
algorithms. Algorithms which run in sublincar time, say n'/? can be of practical impor-
tance. This is in contrast to the analogous situation for sequential algorithms, where super
polynomial algorithms are rarely practical. A second approach is to look for an approxi-
mate solution to the problem. In some cases, a solution that is close to the desired solution
can be found by a fast parallel algorithmn.

There has been a substantial amount of work done on the approximation of NP-
complete problems. For some problems, there are polynomial time algorithms which find
solutions that are close to the optimal solution. There are also results which give lower
bounds on the degrec of approximation that is possible assuming that P # N P. In Chapter
4 we study the parallel approximation of P-complete problems. Our results are similar to
the results on approximating NP-complete problems. Onc problem that we look at is
finding a subgraph of a graph that has all vertices with high degree. For a variant of
the problem we establish bounds on the degree of approximation that is possible. The
similarity between sequential and parallel approximation is particularly strong for number
problems. Some NP-complete number problems are tractable if the numbers involved
are small. This has motivated the distinction between strong and weak NP-completeness
[GJ2]. We make the same distinction for P-complete problems and give an example of a
strongly P-complete problem.

1.6. Notation and Conventions

Many of the problems that we look at in this thesis are simple graph theory problems.
We use is fairly standard notation. We generally denote a geaph by G = (V, E) where V
is the set of vertices and I is the set of edges. Where we neglect to state it explicitly,
the number of vertices is n. We make frequent use of the notation that identifies a set of
vertices with the induced subgraph on the vertices. For V/ C V, the induced subgraph is
the graph G' = (V', (V' x V') N E).

In this thesis, we describe algorithms at a moderately high level. In most cases our
intcrest is to show that a problem can be solved in NC, as opposcd to giving the best
possible parallel algoritha for the problem. We are not that worricd about the exact
power of the logarithm in an algorithm’s running times or the degree of the polynomial
for the number of processors used. In cases where we do claim explicit time and processor
bounds, they arc with respect to a CREW P-RAM implementation.

In our algorithms, we take advantage of many known parallel algorithms for graph
problems. A very important algorithm that we use a number of times is the Karp-Upfal-
Wigderson matching algorithm. The algorithm is an RN C algorithm that finds a maximum
cardinality matching in a graph. The matching algorithm can be used to solve a number
of other important problems. For example, it can be used to find a maximum flow in a
unit capacity network. We also use quite a few subroutines to solve simple graph theory

3

."‘v. .
oy

Ld

-
=

:
L

07
)

-,

o .l-:'

[
F]

i '."‘:'l

% |

)
)

- o
R
Yy bty 40, 0

vt A
v
N

NN

problems. We use algorithms for such problems as finding connected components [V], N
finding articulation points [TV], and finding a shortest path between two vertices. We also B
rely on paralle]l algorithms for maintaining data structures and manipulating graphs. We
do not go into the details of these operations. The parallel algorithms for these problems are :

) not very complicated, especially when we are only concerned with getting NC algorithms, ::
' as opposed to getting the best algorithms possible. ¥
We describe our algorithms in a PASCAL-like language. Many of the statements are \:;
English language descriptions. It would not be difficult to convert these to give a more de- w

tailed implementation of the algorithms. Some of our algorithins appear rather sequential, A

their parallelism arises from the parallel implementation of the individual statements. We b

do use a few explicit parallel control structures in our algorithin descriptions. We use a e

statement which has the form: for each z do in parallel. This has the natural meaning &

of running independent copies of the routine for each z and then combining the results

when the routines are all done. .

s

o’.‘

A .}
: 3
g e
"9 -'\’
. }_\
‘ -
- <
: v
. =
e

e

2

. "2
.n']

"

N
A N
: A
%

) ::
10)
LR I NS S R N S Y B e LT LT LT T N e e Te P, Ny - '.‘
AT .._ FJ A ERF A .. E NS . e - .“' L I TR T T B T .

1"l

“- » 52N

DAL

I‘O.
PR Mt B i)

.,

A AR

-

3yss

*

ans

Lo

Chapter 2 P-Complete Algorithms

2.1. Introduction

Onc of the interesting and challenging aspects of parallel computation is that different
techniques need to be used for parallel algorithms from those that are usecd for sequential
algorithms. In sequential algorithins, processing is done one step at a time. This allows
solutions to be constructed in many phases, with choices depending upon all of the earlier
choices that were made. However, to get fast parallel algorithms, many choices nced to
be made simultaneously. The computations nced to be localized, with only a small depen-
dence between the various components of the computation. In this chapter, some simple
sequential algorithms are examined. Strong evidence is presented that the techniques used
in these algorithms are often inherently sequential, so there is little hope that they can be
sped up substantially with parallelism.

Some sequential algorithms have fairly direct paralicl counterparts. The parallel algo-
rithm can be thought of as a parallel implementation of the sequential algorithm. A trivial
example is matrix multiplication. The straightforward sequential algorithm computes the
entries of the product one at a time, while the parallel algorithm computes the entries
simultaneously. However, other sequential algorithms take advantage of being able to base
decisions on accumulated information. For example, the sequential algorithms for match-
ing start with an initial solution and improve the solution through a number of phases
of augmentation. The known parallel algorithms [KUW] for matching take a completely
different approach.

In this chapter we formalize what it means for an algorithm to be inherently sequen-
tial by rclating computations to certain P-complete problems. The term “P-complete
algorithm” is introduced to describe these algorithms. This provides strong evidence that
some algorithms are inherently sequential. When we show that a certain approach to a
problem probably cannot yield a fast paraliel solution, this does not imply that the prob-
lem is diflicult. There are a number of examples of problems where the natural sequential
algorithin is P-complete, but a different approach can be used to construct a fast parallel
algorithm.

The sequential algorithms that we examine are greedy algorithms. The greedy para-
digm is a very important general technique used in many sequential algorithms. IExamples
of greedy algorithms include Kruskal’s minimum spanning tree algorithm [K] and the well
known algorithm for depth first search |T]. A greedy algorithm is onc which builds its
solution one step at a time. Itcms are added to the partial solution by picking the “best”
choice by some gencrally simple criterion. Once an item is added to the solution, it will not
be discarded, thus there is no backtracking. Greedy algorithis often secm very sequential
in nature, since the choice of which item to add to the solution set frequently depends
on many of the previous choices. In this chapter we show that the greedy algorithms for
several simple problems are P-complete. We show that the greedy algorithms for finding
a maximal path, for inding a set of disjoint paths, and for approximating a maximum cut
are all P-complete.

11

NP A

. et T x St -'."--"‘.w.v'~‘-'.~’ Tt
R T A R W ¢\J,_.a.._, ...\‘_.., .‘.._\. s NN N A

> > v »
‘ .

-.-’

L4

N G A

> YA

PR)
y 80

S i

- L
W

IS R
»

kol R AN
DGO

I

PR
.
QY ‘vl

v s

NGy

el
L
A%

I i)

2.2. Definition of P-completeness for Algorithms

The purpose of extending the notion of P-completeness to algorithms is to be able to
capture the idea that an algorithm is (probably) inherently sequential. The definition of
P-complcteness for algorithms that we give must in some way capture what it mcans to
implement a sequential algorithin as a parallel algorithm. In other words, the delinition
must establish some kind of correspondence between sequential and parallel algorithms.
To justify the term “P-completeness,” our definition should give as much evidence for
the algorithm being inherently sequential as there is that a P-complete problem cannot
be solved by a fast parallel algorithm. To do this, our definition should imply that if a
P-complete algorithm could be implemented as an NC algorithm then P = NC. There are
a number of different ways that P-completeness can be defined for algorithins. The basic
idca in the definitions is that the problem of performing the same computation as is done
by the scquential algorithm is a P-complete problem.

One way to definc an algorithm to be P-complete is in terms of the full computation of
a Turing machine. The computation of a polynomial time Turing machine on a particular
input can be summarized by a string of polynomial length. For a Turing machine M,
this string can be viewed as a function fps(z) of the input z. A possible definition of
P-completcness of an algorithm A with Turing machine M is: A is P-complete if the
problem of computing far(z) is P-complete. The drawback to this approach is that it is
heavily dependent on the actual Turing machine corresponding to an algorithm. It is rarely
desirable to have to describe algorithius in terms of Turing machine implementations. The
advantage of this approach is that it fully captures the computation of the algorithm.

The definition of a P-complete algorithm that we use is based ou [unctions that solve
search problems. A search problem 1T consists of a set of instances Dy and set of solutions
S[1] for each I ¢ Dy [GI3 pp. 110]. The problem can be viewed as a relation R =
{(z,y) | z € Dy,y ¢ S|z]}. An algorithm for a scarch problem is a function f such that
(z, f(x)) € R. A simple example of a scarch problent is the spanning tree problem. The
solutions for a graph G form the set of all spanning trees of G. An algorithm that solves
the spanning tree problem is one that finds some spanning tree. For a scarch problem,
there are many possible algorithms that solve the problem. Our definition of a P-complete
algorithm is:

Definition 2.1. An algorithm A for a search problem is P-complete if the problem of
computing the solution found by A is P-complete.

A shortcoming of our definition of a P-complete algorithm is that it docs not imme-
diately relate to the internal computation of the algorithm. lFor some algorithms it is the
method used to get the answer that appears sequential in nature. The way to handle this
with our current definition is to redefine the result of the algorithm so that it includes a
trace of the computation. This means that we include with the result a list of certain inter-
nal states of the computation. For example, if an algorithm computes the partial solutions
S1,...,S, on its way to the solution S, then we could define the result as Sy,...,S,,S.
This allows us Lo handle most cases of interest with our definition of P-completeness for
algorithms without having to deal with the details of Turing machine implementation.

12

LIS T R TS M s A e R AR R
- .‘- ..’:..'t ..-.\- .‘.ﬁ’._‘;-»'eq.‘.u_':.‘ --_‘:-_ .\
Y Y] \ ¥ Y \'w N "~

[ORs

re

PLANPL ™

evavavs s ®

In order to prove that an algorithm is P-complete, it is necessary to have a fairly precise
statement of the algorithm. When describing an algorithm, it is common practice to leave
certain steps unspecified with statements like “pick an unmarked vertex.” This is done
when several choices are satisfactory and there is no nced to encumber the description with
superfluous detail. When implementing the algorithm, some arbitrary choices need to be
made. Often a reasonable choice to make is to choose the lowest numbered element. When
this choice is made, frequently the resulting solution is the lexicographically minimumn
solution. The natural lexicographic order on strings is sy -+ 8; <ger ty---tx if sy a8 =
ty---t;and g <kors ---s;, =t;---t; and s, < ty;,;. We shall use the word lezmin in
place of the cumbersome phrase “lexicographically minimum.” For graph problems with
edges represented by adjacency lists, another reasonable approach for unspecified choices of
edges is to take the first available edge from a list. The result of this approach is generally
equivalent to choosing the lowest numbered adjacent vertex when the edges arc ordered in
the list by vertex numbers.

An example of a P>-complete algorithm is the greedy algorithin for finding a maximal
independent set. For a graph G = (V, I) an independent set [is a subset of the vertices
such that there are no cdges between vertices in /. A maximal! independent set is an
independent set that is not properly contained in any other independent set. The sequential
algorithm constructs a maximal independent set by considering the items one at a time.
If an item is not adjacent to the independent set when it is considered, then it is added to
the independent set. The algorithm is:

MazimallndependentSet(G)
begin
I
for 1 — 1 to |V| do
if v; ¢ N(1) then
I Tu{v};
end.

Onc approach to designing a fast parallel algorithm for finding a maximal independent sct
is to attempt to implement the sequential algorithm as a parallel algorithm. The algorithim
would have to decide whether or not to include an clement v, in I without building I step
by step. Ilowever, this approach is not likely to be successful. The solution that is found
by this algorithm is the leximin solution. The problem of computing the leximin maximal
independent sct is P-complete, so the algorithm is a P-complete algorithm. This result
is due to Cook, who showed that the complementary problem of computing the lexmin
maximal clique is P-complete [C2]. Although this sequential algorithm apparently cannot
be used to create a fast parallel algorithm, a different approach can be used to construct
a fast parallel algorithm. Wigderson and Karp |KW] developed a probabilistic parallel
algorithm for constructing a maximal independent set. Their algorithin can be converted
into a deterministic algorithm, so the problem can be solved in ¥C. A simpler maximal
independent set algorithm has been found by Luby [Lu].

L' In this thesis, we nse manimal to denote something that cannot be extended, and we use maznimum

to indicate maximum cardinality.

13

i

P4

.....
et

}‘a"l

“

Ay Ay

« o v a
3, 8, 08 '."5‘

P e !

RS
s % Y T

« "} ‘."?.

-
L)
-

A A

VThTees e e 0
RPN AN
K] T AR AT R

YA : \‘—"‘c: l"l: --' s, A.‘ : S

LA

£

RN

" (NN
[N N A R R a

2.3. Finding a Maximal Path

The first algorithm that we show to be P-complete is a simple algorithm for finding
a path in a graph. The algorithm builds a path one vertex at a time by going from the
current endpoint to its lowest numbered ncighbor that is not alrcady on the path. The
algorithm runs until a vertex is encountered that has all of its neighbors on the path so
that the path can not be extended. A path that cannot be extended is a mazimal path.
The greedy algorithm for finding a maximal path starting at a given vertex r is:

GreedyMazimalPath(G,r)
begin
Perver,
while v has an unvisited neighbor do
begin
w « lowest numbered unvisited neighbor of v;
P — Pw;
v — w;
end
end.

The greedy algorithm computes the lexmin maximal path. We show that computing
the lexmin maximal path is a P-complete problem, so that this algorithin is ’-complete.
However, this does not mean that a maximal path cannot be found by a fast parallel
algorithm. The next chapter gives an RNC algorithm for finding a maximal path. The
greedy algorithmn for finding a maximal path is closely related to the algorithm tor finding
a depth first search tree of a graph. The greedy maximal path algorithm finds the initial
branch of the lexmin depth first search tree, so our results imply that the greedy algorithn
for depth first search is IP-complete. The original proofl that computing the lexmin depth
first scarch tree is P-complete is due to Reifl [Re).

2.3.1. Directed Lexmin Maximal Path

We show that the problem of computing the maximal path found by the greedy algo-
rithm is P-complete. We first show the result for directed graphs and then for undirected
planar graphs. The proof for dirccted graphs is simpler and conveys the intuition of why
the problem is difficult better than the proof for planar graphs. The second result is
stronger since it applics to a very restrictive class of graphs. Finding the lexmin maximal
path in an undirected graph is a special case of the problem for directed graphs, since an
undirected edge can be viewed as a pair of directed edges.

Theorem 2.1. The problem of computing the lexmin maximal path is P-complete for
directed graphs.

Proof: The proof is a reduction from the monotone circuit value problem. Let g =
Bi,...,B. be an instance of the monotone circuit value problem. The circuit 8 is trans-
formed in log-space to a gravh with distinguished vertices r and v such that v will be on
the lexmin path from 7 if and only il the circuit evaluates to true.

14

PRACAORAAR,

-

L)
P

.T v

v

]

! OO o

. e
A R

For each gate (i there is a collcction of vertices. A gate is simulated by the way that
the lexmin path passes through the vertices corresponding to that gate. The gates are
evaluated in order, with the path first passing through the vertices for 8, then f3;, and
so on. There are vertices k,,, and k,,, in the collection of vertices for §x. The segment of
the lexmin path between the vertices k;,, and k,,, visits certain vertices to test the values
of the inputs to B and then visits other vertices to indicate the value of the output of the
gate.

A key component of the simulation is a switch which is used to indicate the value of a
wire. For each gate there is onc switch for each output. The vertices of these switches are
traversed during the simulation of the gate to indicate a true value, and they arc bypassed
to indicate a false value. If a switch for 8 is not visited when simulating Sy, it might be
traversed when simulating a gate 8, which receives an input from Sg.

The gadgets for the gates are shown in the figures below. In the figures, the switches
are the groups of four vertices drawn in a square. The gadget for gate [y is connected to
the gadget for Bi .y by an edge from k. to (k + 1),,. If a gate By receives an input from
gate 03;, then the gadget for B is connected to the output switch of ;. The AND and OR
gates are illustrated as 2-output gates 84 that receive inputs from f3; and 3;. The vertices
of the graph that is constructed arc labelled so that the labels of the vertices associated
with B, arc less than those associated with B; for 2 < k. In addition, within gate G, the
labels arc as indicated in the figures, where k < k, < k, 4.

k,‘n kout kin k«mt
>~ ® ?
0-INPUT I-INPUT

The circuit is simulated by constructing the lexmin path starting at the vertex 1;,.
From a vertex v the path goes to the lowest numbered neighbor of v that is not already
on the path. For a 0-INPUT, the path goes directly k;, to k.., and for a 1-INPUT the
path traverses the switch on its route from k,, to k,,,. For an AND gate if cither of the
input switches has not heen traversed when the path gets to k,,, (so the gate is receiving
a false input), then the path goes through an input switch to k., bypassing the output
switches. For an OR gate, if cither of the switches has been visited then the path will go
through the output switches. In the illustration of an OR gate, the highlighted path shows
what happeus when the gate receives a false input from 8, and a true input from §,. If
the lexmin path visits a vertex in the output switch of the final gate G, then the circuit
evaluates to true, and if the path docs not visit the output switch, the circuit evaluates to

false. |

-
)
4

CAANRAARS

[I,;.'g_n

AN

s, ".:t 'y ""

"

L) .
o ..

AN

vy, 'f.'-'

AR
DN

)

k
AND gate

74

OR gate

2.3.2. Planar Lexmin Path

The P-completeness result can be strengthened by showing that it applies to a very
restricted class of graphs. We show that computing the lexmin path is P-complete even
for undirected planar graphs with maximum degree three. Many graph problems appear
to be much casier when they are restricted to planar graphs. For example, both depth
first scarch [Sm| and network flow [JV] can be solved in NC for planar graphs. The P-
completeness proof that we give is similar to the previous proof. We reduce from a variant
of the circuit value problem and simulate the gates in the same manner as above. The
circuit value problem that we use is for a layered planar circuit made up of NOT and OR
gates. The gates arc on levels, with the gate S 41 immediately to the right of 8, unless 8y

.
.
1Y
»
>
~

N e Ny e v

Pl o g A

5NN R A)

D R

b t'ad

is the right most gate on a level, in which case f; . is the leftinost gate on the next level.
The wires between gates run only between consecutive levels and the wires do not cross.

Theorem 2.2. The problem of computing the lexinin maximal path in undirected planar
graphs with maximuimn degree three is P-complcte.

Proof: We prove this theorem by giving a log-space transformation from the circuit value
problem for layered planar OR-NO'T circuits. The planar circuit value problem remains
P-complete with this restriction. The reduction of an arbitrary circuit to a planar circuit
[G1] can be modified so that this type of planar circuit is genterated.

The construction is the same as used in Theorem 2.1 except that we use the gadgets
below. The gadgets for the gates can be put in levels and the connections to the switches
can be done without edge crossings. The only violation of planarity is the cdge between
kout and (k + 1),,, when B; and By, are on separate levels. This problem can be solved
by laying the graph out on a cylinder instead of the plane. The cylinder can then be
projected onto the planc to achieve a planar layout. The vertex labels shown in the figures
are just 0, 1, 2, 3, and 4. The vertex labels can be made unique by replacing each label &
(k€ {0,...,4}), by a label in {kn,...,(k+ 1)n}.

The circuit is again simulated by computing the lexmin path from the vertex 1,,,. The
path will visit the outpul switch of the final gadget if and only if the output of the circuit

is true. 1
kin kuut kin kuut
0 1 1 0 0 1 1 0
0 [] [0 0 [] [] 0
1 1 1 1
0-INPUT t-INPUT
1 1 1 y 1
04 ¢ 0 0 ¢ 0
1 1 1 1
km. 3 kout
0 4 i 2 3 .2 4 0
0 ®) ® 0 0 [] 0 O
1 1 1 1
OR gate

17

-’: ."i l

5z, |PPR

i ’ e

(PRI RA

CAXAS

| AL

e r-. ’

T

) *% ‘e
i ‘.‘a"" O

e

?

AR

PN e

.
»

e

R W

' WA NN A

LI S 3

oS

LAY O S A Y

Chl i S T W RS

NOT gate

Since the lexmin maximal path is the initial branch of the lexmin depth rst search
tree, we have the following corollary. This is an improvement of the result of Reif [Re].

Corollary 2.1. Computing the lexmin depth first search tree is P-complete for planar
graphs.

2.4. Finding a Maximal Set of Disjoint Paths

A sccond path problem that can be solved by a simple greedy algorithm is to find a
maximal sct of disjoint paths. The problem is:

Given a graph G = (V,E) and a subsct U of V, find a maximal set of vertex

disjoint paths joining the vertices of U.

The set of paths is required to be maximal in the sense that no more paths joining vertices
of U can be added to it. A greedy algorithm solves this problem by finding paths onc at a
time until no more paths can be found. In this section we examine the problem when it is
restricted to a layered directed acyclic graph (dag). A layered graph has all of its vertices
in levels with edges only betwecen consecutive levels. The motivation for looking at this
restricted case is that it occurs as a subroutine in a number of network flow and matching
algorithms [HK].

We show that the greedy algorithm for finding a maximal set of vertex disjoint paths
in a layered dag is P-complete. The greedy algorithm repeatedly finds paths from the first
level to the last level and removes them. This process is repeated until the first level is
scparated from the last level. When a path is reinoved, some vertices might be separated
from the last level, these vertices are also removed. When the algorithm constructs a
path, it finds the lexmin path between the first and last level in the current graph. The
complexity of the problem does not arise from finding lexmin paths, since they can be
found easily in a dag. The complexity arises from the dependence of a path on the previous
choices of paths,

18

. -
0

-

} o

B AAS

U4

< —r‘v.’ '{ e o

%

48 &N e % S

AL

‘.
g
"l
a

-« % e

MO A ARG ' e Mgt aul ach S oS S Sl A i b ad m et Sd ant Bl el ok ol ndl ol o

Theorem 2.3. The greedy algorithm for computing a maximal set of vertex disjoint paths
in a layered dag is P-complete.

Proof: The proof is a reduction from the circuit value problem with several minor restric-
tions. First, the circuit is restricted to be made up of only inputs, NOT gates, and AND
gates. The fanout of all gates is assumed to be exactly two, although one of the outputs
of a gatc need not be connected to anything. The gates are numbered topologically so
that a gate gets its inputs from lower numbered gates. The outputs of gate 8, are denoted
1) and 15, with 7, going to the higher numbered gate receiving an input from f; and 1,
going to the lower numbered gate. If only one gate gets an input from g;, then that gate
receives 2. It is finally assumed that the AND gates get their inputs from distinct gates,
so B = AND(i,,12) is not allowed. The circuit value problem clearly remains P-complete
with these restrictions.

Let 8 = B;,...,Bx be a circuit satisfying the above conditions. We construct a layered
dag G such that the maximal set of disjoint paths found by the greedy algorithm with input
G corresponds to the evaluation of the circuit 5. The basic structure of G is:

1 2 3 4 n
°
N
Gl (72 63 C4 G,.
Lo
1 2! 3 4’ n

Gk is the gadget which is associated with the gate 8. The circuit is simulated by comput-
ing a scquence of paths P, ..., P,. The path Pk is the lexmin path in the graph G after
the paths Py, ..., P, _; have been removed. The gate S is simulated by the path P. The
path Py goes from k to k' and lies entirely in G except when it tests the inputs to By.
There arc two distinguished vertices k; and k; in Gy that are visited by I’ if Bi is true
and are not visited if G is false.

The gadgets for the inputs and the gates are illustrated in the figurcs below. The
graph has 3n + 2 levels. The output vertices for G are numbered k; and k. The vertices
ki, k2 and kj are on levels 3k — 1, sk, and 3k + 1 respectively. In the figures, all edges are
directed downwards. For a 1-INPUT and a 0-INPUT, the path P, goes directly from k to
k'. The vertices k; and k, arc visited for a 1-INPUT and arc not visited for a 0-INPUT.

In the figure for the NOT gate, B = NOT(?,), p ¢ {1,2}, the vertex { is numbered
higher than the vertex t,. If the vertex ¢, has not been visited when Py is constructed,
the path P goes through 1, to k; and k3, otherwise the path goes through ! and bypasses
k; and k. Since 1, not being visited corresponds to 8 recciving a false value, the gadget
simulates a NOT gate. In the AND gate By = AND(1,,,74), p,q € {1,2} the path Py goes
through k, and k; if both 7, and j, have been visited by carlier paths. If ¢, or j, has not
been visited when Py is constructed, then the path does not go through the vertices k)
and ky. Note that il both 7, and j, have not been visited, the path Py goes through both
1, and 7,.

19

..........

.....................

....................
..........
o ., o

)

Yyt ey

e rr
>\

R

'a{ ORI

’

NN N]

\I-'-_'{v‘n‘r'f-.

LI PN
o ()

L 7

re

4

S\.S\’l"

s s ean
)

r,r,
‘e %a

Y

''''''''

» a2 p w]

e

. - PP i A SR Sl o e S g e i S M ar g S S i A otk A DAL e atgne

k, ky
k, k2
ks ka
K o K o

1 - INPUT 0 - INPUT

In the NOT gate shown below it is essential that the vertex 1, is visited by some
path before the path Py is constructed. If this were not the case, then the path Py would
go out through 7, into the vertices of a different gadget, not returning to k; and k,.
This also applies to the vertices 7,,, | and 7, in the AND gate. For any gate, the vertex
k- is on the path P, so there is no problem for p = 2. If p == 1, then the gate Si is the
higher numbered gate to receive an input from ;. Suppose 3, also gets an input from ;.
The path P, contains the vertex 2 if 7, is not on P,. Hence the vertex ¢, is already on
a path when P is constructed. This completes the proofl that the circuit is successfully
simulated by the set of disjoint paths found in ¢ by the greedy algorithm. |

2.5. Neighborhood Ilecuristics for NP-Complete Problems

Greedy algorithms are often used to approximate NP-complete problems. The basic
approach is to take some starting solution and attempt to improve it by local changes. The
improvements arc repeated until a local maximum is rcached. Although these heuristics
are difficult to analyze, they have been found effective in practice.

The greedy algorithms for many ncighborhood scarch schemes appear to be inherently
sequential. It seems to be diflicult to perform more than a few steps of the scarch at a
time. As an example of this we show that an approximation algorithm for the maxcut
problem is P-complete. The maxcut problem is:

Given a graph G = (V, I), find a partition {V|,V2} of V such that the number

of edges between Vi and V; is maximized.

The heuristic that is used is to move vertices between the two sets as long as moves increase
the number of edges between the two sets. IFirst some initial partition is chosen. Then a
vertex is found that has more neighbors in its own set than in the other and it is moved to
the other set. This step is repeated until each vertex has more neighbors in the opposite

20

- ~ . . - ...l e - T ama ~sNa - e
'- - ., b - . .‘ hd .- --- - .. -" - - A.' * a® b\ -\ \-x -‘. * ‘. .. . - -

T T M L A R N L e Y AR S e S
g R NN R I A N A I S N I AN DN A I AN T SO AT

»

-y e *
,',.:",.-.

P

ok ek

ip l iy
Tp+1 Lo+l
: : Ja

ki o . Jg+1 o ki

k2 . ® k2

k3 k3

k' ‘ . K

NOT gate AND gate

set than in its own set. Since the number of edges between V) and V5 is increased cach
move, there are at most || phases.

An alternative way to view this scheme is as a coloring problem. The goal is to color
the vertices with two colors such that each vertex has more neighbors of the opposite
color than of its own color. Such a coloring is said to be stable. A stable coloring can be
computed by switching the colors of vertices one at a time until the coloring is stable. A
valid swap occurs when a vertex with more neighbors of its own color than of the opposite
has its color changed. We show that given a graph with an initial assignment of colors,
it is P-complete to compute a sequence of valid swaps that reaches stability. This shows
that the greedy algorithm for approximating maxcut is P-complete. For this problem, we
require that the output include the intermediate computations that are made. We do this
so that all of the color swaps are valid. Our result does not imply that it is P-complete
to compute a stable coloring. It is an open problem whether it is possible to compute a
stable coloring with a fast parallel algorithm. An NC algorithin is known for computing a
stable coloring of a graph with maximum degree three [KSS).

Theorem 2.4. Given a graph G -. (V,FE) and an initial assignment of colors to the

21

P A

’,

A AN

£l 2

i QAN

>

CuTe 17a
A l.l'n'i'/".
PR RIRARD

(43
i

vertices, it is P-complete to compute a sequence of valid swaps that rcaches a stable
coloring.

Proof: The proof is a reduction from the monotone circuit value problem. Let g =

{ B1,...,Pn be a monotone circuit. A graph G is constructed such that a scquence of x4
2 valid swaps that reaches stability corresponds to the evaluation of the circuit. There is -
] a subgraph for each gate with an initial assignment of the colors I2/B. The OR gate SN
’ is shown below. The gates are connected together in a manner that corresponds to the

. connections of the circuit. The subgraph for B has three distinguished vertices, the vertex

" k is associated with the gate’s inputs and the vertices k; and k, are associated with the Ny
g gate’s outputs. If By gives outputs to §; and B,, (I < m), then there are edges (ky,!) -
[and (kz,m). In the illustration of the OR gate, the vertices labelled with I3 have color B X
' and are connected to two vertices with color R (not shown in the figure). These vertices

g will never have more B neighbors than R neighbors, so they are colored I throughout the X
. simulation. Similarly the vertices labelled R have color R and arc connected to two vertices -
- with color B. The AND gatc has the same structure as the OR gate except that the two =
A vertices labelled z are not present. A 0-INPUT Sy is a vertex & with color R connected to -

two vertices with color B and a 1-INPUT B, is a vertex k with color B connccted to two
verlices of color R. If the input () goes to the gate §;, then there is an edge (k,{).

The circuit is evaluated by finding a sequence of valid swaps that reaches a stable col-
oring. The graph G has the property that the coloring achieved by any maximal sequence
of valid swaps is unique. The graph also has the property that any vertex can have its color
changed at most one time. The initial coloring of the gate B; is stable, except possibly

A
o
[2

> '\{‘i ,'l

| O

n.

for the vertex k. If the vertex k is recolored R then other vertices hecome unstable and f_:
N eventually the vertices k; and k, are recolored B. If the vertex k is recolored It, then the N
N gate B evaluates to true. When the vertex k is colored R, the swaps propagate so that R
N the vertices k, and ky have their colors changed to 3. IFor the OR gate Fi, if one of the s
vertices corresponding to its inputs is recolored, then the vertex & is recolored. Similarly, .
for the AND gate Sy, if both of its inpuls are recolored, then the vertex k is recolored. o
A maximal sequence of swaps simulates the evalnation of the gates in roughly topological ::::
order. A gatc is not set to {rue (i.e. the colors switched in the associated subgraph), until {::
. enough of its inputs are known to be true to make the gate true. The simulation proceeds __
until the subgraphs that correspond to all gates that evaluate to true have had their colors
switched. i X

2.6. Additional P-Complete Algorithms

"
Many other sequential algorithms can be shown to be P-complete. Here are a few -
o) additional P-complete algorithms. All of our P-completeness prools for these algorithms .
' are reductions from variants of the circuit value problem. The P-completeness proofs for p
the high degree subgraph problem and first it bin packing arc given in Chapter 4. The
other proofs are left to the interested reader.

....................

=
\J
)
~
A
". g
o
ALS
B (B) N
o
S
(ﬂ,) R ,:""v
o -
y
g
(B:) R ::‘_:
B (Bm) e
N0
o
Bx = OR(B;, B;), Outputs to f; and B,, -
High Degree Subgraph Problem q‘.-
PROBLEM: Given a graph G = (V, E) and an integer k, construct the maximum induced e
subgraph that has all vertices of degree at lcast k. s
SEQUENTIAL ALGORITHM: The sequential algorithm for this problem discards vertices of .
degree less than &k one at a time until all remaining vertices have degree at least k. o
Comment: The problem of determining if a graph has a nonempty induced subgraph with '::\
minimum degree k is also P-complete. Various methods of finding approximale solutions ::Z'
to the high degree subgraph problem are discussed in Chapter 4. o
First Fit Bin Packing -
PROBLEM: Given a finite set U of items with sizes s(u) € Z* for each u ¢ U and a bin -
capacity I3, construct a first fit packing of the items into the bins. ;-,':: .
SEQUENTIAL ALGORITHM: The scquential algorithm considers the items in the order >’
Uy,...,u, and places each item in the first bin with enough room left for the item. -
Comment: This problem remains P-complete if the items are in decreasing order, but can i
be solved in NC if the items are in increasing order. The problem is discussed further in e
Chapter 4. :::::;:
Alternating Breadth-first Search Ny
PROBLEM: Given a graph G =: (V,) with the edges partitioned into two scts M and "
U, and a distinguished vertex r € V' construct an alternating breadth first search from r. ,..‘
An alternating breadth first scarch is a partition of the vertices into levels, with edges in :\::';
U going from even levels to odd levels, and edges from M going from odd levels to even B
levels. A vertex v is on level ¢ for 2 even (z odd) if it is not on any level less than ¢ and
there is a vertex w on level 7 — 1 with (v,w) ¢ M ((v,w) € U). The vertex r is on level 0. ~
SEQUENTIAL ALGORITIIM: The scquential algorithm assigns the vertices to levels, one :
level at a time. ":
-._.:}
23 i
______ R T ST L R RIS A WATHC N SRR SR Tttt

L N ST D B IR T A N i L AT W A i R LA L S
LIRS
.
-

St e N L S AN e L RO
~ \..-..-f\..b..v . ¥ ..':

SO
DAY

NA Y

~l
>, Comment: This labelling procedure arises in some scquential matching algorithms when
’ looking for augmenting paths [MV]. A variant of the algorithm which collapses blossoms
' when they are encountered is also P-complcte.
. Travelling Salesman 2-Opting
;" PROBLEM: Given a graph G = (V, E) with edge weights, w(e) € Z* for »ach e € E and
N an initial tour T}, find a sequence of tours Ty, ..., T,, such that T, is the result of a 2-opt
0 [KL] of T;_ |, the cost of T} is less than the cost of T;_, and either T,, is a locally optimal
3 tour or m > [V|. A 2-opt refers to a neighborhood transformation done on tours of the
: graph.
¢ SEQUENTIAL ALGORITHM: Transformations are applied one at a time until a local opti-
L mum is reached.
Comment: 1t is necessary to put a bound on the number transformations, since examples
" are known where an exponential number of transformations may be made before a local
. optimum is reached [Lue].
4
2.7. Discussion
:
s In this chapter, we have shown that a number greedy algorithms seem to be inherently
*y sequential. [However, there is one important greedy algorithin which has a parallel imple-
:: mentation, namely Kruskal’s minimum spanning tree algorithm. The algorithm constructs
a minimum spanning trec by considering the edges in order of their weights. It maintains
as its solution sct a collection of trees. Any edge which joins separate trees is added to the
.2 solution. This algorithin can be converted to a parallel algorithin by considering cach cdge
3 independently. An edge is in the mintmum spanning tree if and only if it joins distinct
< connected components of the edges that come belore it. Il the edges are ordered by their

cdge numbers, then this algorithm finds the lexmin spanning tree.

The reason that the greedy algorithm for the minimum spanning tree problem can

be implemented as a fast parallel algorithim is that it is casy to know if an edge is in the
solution set without knowing exactly what the solution set is when the cdge is considered.
The minimum spanning tree problem is a special case of the maximum independent set
problem for weighted matroids. As long as the matroid has a rank function which can
. be computed by a fast parallel algorithm, then the associated greedy algorithm can be
. parallelized.
. Therc are a number of interesting open problems concerning greedy algorithmms. One
of the most important is the status of the greedy algorithm for computing a maximal
matching. This algorithm computes the lexmin maximal matching. Although this prob-
lem bears a close resemblance to the lexmin maximal independent set problem, it is not
known to be P-complcte. A P-completeness proof of lexmin maximal matching would be
significant since it would imply that weighted matching is P-complete.

In this chapter we introduced the notion of a P-complete algorithm. This notion pro-
vides a means to identify techniques that probably will not work (or a particular problem,
and to dircct the scarch for algorithms in more promising directions. The specilic results
of this chapter show that for quite a few problems, a greedy approach is not likely to

‘efae

PADIPI P

! 24

o e e e T e .:i’.:.-. _f;.j-:.:-'.:-'.:-.:::{:.:-'_’.}:.'-:.'
. - " { ." 0N \-

D
. g A

yicld a fast parallel algorithm. Ilowever, since many of these problems can be solved by
parallel algorithms using other methods, this shows that different approaches are needed
for parallel computation from those that are used for sequential computation.

.....

- e

Chapter 3 Path Problems

3.1. Introduction

In this chapter we present parallel algorithms for a number of simple combinatorial
problems. The problems that are examined all deal with finding certain paths in graphs.
The most important results of this chapter are that it is possible to find a maximal path
with an R A'C algorithm and that a depth first search tree can be constructed in O{n!/2+)
time. Some of the results in this chapter are complementary to the results of the previous
chapter. The greedy algorithms for several problems studied in this chapter are P-complete,
but these problems can be solved by fast parallel algorithms when different approaches are
taken.

The first algorithm that we give is a simple probabilistic algorithm for finding a long
path in a dense graph. Given a graph with all vertices of degrece at least m, a path of
length m - o(m) is constructed with an RN C algorithm. The second problemn we look at
is finding a maximal set of disjoint paths. The problem is given a graph G = (V, E) and a
subset U of the vertices, find a maximal set of vertex disjoint paths with their endpoints
in the set U. We show that this problem can be solved in NC for graphs with bounded
degree. We then show that a mazimum sct of disjoint paths can be found in RNC using
the Karp-Upfal-Wigderson matching algorithm. The major result of this chapter is that
the maximal path problem can be solved in RN C. The maximal path problem is:

Given a graph G = (V, E) and a vertex r, find a simple path starting from r that

cannot be extended without encountering a vertex that is already on the path.

We also show that the restricted case of the maximal path problem for bounded degree
graphs can be solved in NC. Our final result is that a depth first search tree of an n vertex
graph can be constructed in parallel time ()(1;'/2'“).

There are a number of reasons to look for parallel algorithmms for problems such as
these. A major reason is to gain an understanding of the types of problems that are
in NC and RNC. Although thesc problems are fairly simple in nature, it is by no means
obvious that they can be solved by fast parallel algorithms. These problems are not closely
related to other problems known to be in NC or RNC, so the positive results increase the
varicty of problems that can be solved by fast parallel algorithms. A sccond reason to look
at particular problems is to identify techniques to use in parallel algorithms. There are
relatively few general technigues used in parallel algorithms, so it is hoped that by looking
at new problems, additional techniques can be discovered and added to the repertoire.

Some of the problems discussed in this chapter are important problems in their own
right. In particular, depth first scarch is one of the major open problems in parallel
computation. The algorithm in this chapter is the first sublincar algorithm for depth first
search. Much of the work in this chapter was motivated by the depth first scarch problemn.
The initial reason for studying the maximal path problem is its close relationship to depth
first search.

................
- -

...........
.............

“a"y W
P XA

‘2 ‘s-.'.*.

. P4
o e Yy A,

e o,
e /'l,-,

NI YY T
AN

WMAOONEN
.t'.v"v' o ot

'y

o .‘A’?.'V‘\.‘.“v’

—— v
VT, S

e

.“
b
. »
. -
J ~
! 3.2. Finding a Long Path in a Graph X
' The first problem that we look at is the problem of finding a long path in a dense *
graph. Let G = (V, E) be an n-vertex graph with all vertices of degree at least m. The ::~
graph clearly has a path of length at least m. This problem can be solved sequentially by
‘ by the grecdy algorithm discussed in the previous chapter, since any maximal path in G N,
; has length at lcast m. Ilowever, this problem is a little trickier to solve with a parallel ~
algorithm. One plausible approach is to generate a random walk in the graph and take »
) as the path the segment of the walk up until the walk’s first intersection with itself. This -
. does not work since if the graph is a complete graph, then the expected length of the path 4
y constructed by this method is just O(y/n). "
\ The algorithm that we give for this problem is a probabilistic algorithm. The basic ~
idea is to construct a subgraph in which a long path can be found casily. The subgraph is
constructed by making random choices of the edges. The randomization is done in a way :.-'
- where the choices of edges are not fully independent, so that the resulting graph has a long Il
path with high probability. The algorithm finds a path of length at least FITY;ZF where ¢ is et
a small constant. The algorithin runs in expected time O(logn) using O(n?) processors. ;‘\'
The algorithm can be run scveral times to construct a path of length m — o(m) in RNC.
X As long as the path has length less than (1 — ﬁ;)m, the graph formed by delcting the x'
N path has all vertices of degree at least %‘, so a path can be found of length ET«%’?‘ Thus :::
. at most ¢ log®n paths need to be found to construct a path of length m — o(m). .\:
* The first step in the algorithm is to randomly label the vertices of the graph. Each *
vertex, independently and uniformly picks a label from the set {0,...,d — 1} where d = -
. l«ThL»n:i?lj . For a random labelling, it is very likely that each vertex has at least one neighbor)
. with label 2 for every 7 € {0,...,d — 1}. We denote the set of labels of neighbors of v by :l:
: L(v). A labelling with L(v;) = {0,...,d— 1} for all v; € V is referred to as a good labelling. DA
‘™
Lemma 3.1. For a random labelling, L(v;) = {0,...,d—1} for all v; € V with probability]
at least 1 — ,l. o
Proof: Let ¢ = 3In2. The lemma is proved by bounding the probability that there is ‘;:
some vertex which is not adjacent to vertices with all of the labels in {0,...,d — 1}. o
L !‘:.
P{3v; | L(v) #{0,...,d - 1}} < Y P{L(v:) #{0,...,d ~ 1}}
: <D D PLgLw) -
v, €V 0<5<d -1 .-
l -
!)) -y -
N v EV 0<5<d—1 "]
“ 1 .
2 d-cl o
; Sn(l_a_)cogn 4-::
4 l :‘
< n2e—-clogn [
. - n
N | o
: '..
N ‘s
¥ 27 2

The labelling step is repeated until a good labelling is found. Once a good labelling
is found, each vertex picks one of its neighbors a(v) with a label one greater than its
label, thus if vertex v has label k, it picks one of its ncighbors with label (k + 1) mod d.
An auxiliary graph is constructed with vertices v and an edge from each vertex v to the
associated vertex a(v). A typical example of the auxiliary graph is illustrated below. Since
this graph has [V| edges, it must have a cycle. On the cycle, the labels increase by exactly

O LA

\
onc going from a vertex to its neighbor, so the graph has a cycle of length at least d. This)
cycle can be found by path doubling in O(logn) time. !

Auxiliary Graph N

N

=

-

A

3.3. Finding a Maximal Set of Disjoint Paths o
Another path problem is to find a maximal sct of disjoint paths. The problem is: -

Given a graph G == (V, IF) and a subset U of the vertices, find a maximal set

P {Py,..., P} of vertex disjoint paths that join vertices of U. 5
This means that no more paths can be added to P that have their cndpoints in U. We -
require that the paths are non-trivial (i.e., they contain at lcast two vertices), and that :
vertices of U only appcar in the paths of P as endpoints.

The maximal set of disjoint paths problem is a generalization of maximal matching.
It U - V, then the problem is to find a maximal matching in the graph. The maximal
set of disjoint paths problem is an important subroutine for a number of sequential and
parallel algorithms. The dirccted variant of the problem is a key step in the Hoperoft-
Karp bipartite matching algorithm [HK]. We use an algorithm for finding a maximal sct of %
disjoint paths in our depth first scarch algorithm. We present two algorithms for finding -
disjoint paths. The first algorithm is an NC algorithm for graphs with bounded degree.
The second algorithm is actually for a more difficult problem; for inding a mazimum set
of disjoint paths instead of just finding a maximal set of disjoint paths. The algorithm
reduces the problem to matching, so it can be solved in RNC using the Karp-Uplal-
Wigderson matching algorithm. Tt is straightforward to generalize our second algorithin

l.. l.. .'. "' l.‘

e 0 2
- .

“»
.

28

-
.

ST T . . . e e e e e e
e te e . AT SRR e T ST, Tt T B A N L N T Ty
RO GO O RO E R R AR I S R N E I P VDV TRPPLPPRE SRR VI .

. R ot SR JAD Sn o B RAR UL oAl oid

to directed graphs. However, the bounded degree algorithm applies only to undirected
graphs.

When the maximumn degree of the graph is bounded by d, a maximal set of disjoint
paths can be found in O(dlog3 n) time. Thus if d is O(logk n), the problem can be solved
in NC. The algorithm uses the tterated improvement strategy mentioned in Chapter 1.
Each phasc of the algorithm finds a number of disjoint paths and deletes them from the
graph. The number of vertices in U is reduced by a factor of about 1 — % each phase.

A phase begins by finding a spanning tree of the graph. Then a maximal set of disjoint
paths is found in the spanning tree. The paths are then delcted and another phase is run.
If the graph becomes disconnected, the separate components are considered independently.

A maximal set of disjoint paths in the tree is constructed by following paths from the
vertices of U up towards the root. Whenever two or more paths intersect, two of the paths
are joined. For example, in the figure below, paths would be found between the pairs of
vertices (uy,u3), (u4,us), and (u7,ug). The vertices us, and ug would be left for the next
phase.

Uy

Us
Uz
Uz u3

U7 Ug Ug

It is not diflicult to find the paths quickly in parallel. One cthod is to assign values
to the edges of the tree: 1indicates it is a path edge, and 0 indicates it is not a path cdge.
If a vertex is not in {/, then the edge coming out of it has value 1 if exactly one of the
edges coming into it has value 1 and the valuc is 0 otherwise. For a vertex in U/, the value
of its outgoing cdge is 1 if all of the edges coming into it have value 0 and the value is 0
otherwise. The values of all the cdges can be computed by treating the trec as a type of
circuit and using the standard technique for evaluating circuits with fanout one.

Whenever some paths are joined at a vertex, some other paths might be cut off.
The tree can be partitioned into connected components that consist of the edges that are
assigned the value 1. There is at most one component that contains exactly one vertex of
U. Tor the other components, the worst case is if a vertex is in U and all of its incoming
edges represent paths. Since the maximum degree is assumed to be d, this vertex accounts
for two vertices in U being joined, and d — 1 being left unjoined. Thus, the number of

vertices in U/ that are joined is at least 2= (||~ 1). The number of phases of the algorithm

di1
is bounded by i»_l;,l(gilgl_) = O(dlog |U]). Each phase takes O(log® n) time.
d

.............

..................

o ¥ & 8

..'.l'$\

. LA

i _
.] 0 o fa A‘,l LARN '.-

XXX

a

»
i_ 8

‘f‘ ’.{. (.l'- ‘..

3.4. Finding a Maximum Set of Disjoint Paths

We now turn our attention to finding a maximum set of disjoint paths instead of just
a maximal set of disjoint paths. The maximum set of disjoint paths problem (MDP) is:

Given a graph G = (V, E) and a set of vertices U, find a maximum cardinality

set of nontrivial vertex disjoint paths that have their endpoints in U.
This problem is a much more diflicult problem than finding a inaximal set of disjoint paths.
If U =V, then the problem is to find a maximum matching. Finding disjoint paths is the
central step in our maximal path algorithm. We show that MDP is in RN C by reducing
it to matching.

If the problem were to find a maximum set of disjoint paths from a set U; to a set
U,, it could be expressed as a flow problem with unit capacities and then it could be
reduced to bipartite matching [ET]. However, since matching is a special case of MDP, the
reduction is a little more diflicult. Instead of reducing MDP to a flow problem, we reduce
it to a bidirectional flow problem [PS ex. 8.6] [Law]| and then reduce the bidirectional flow
problem to a matching problem. A bidirected graph is a set of vertices, a set of directed
edges, and a set of bidirected edges. A dirccted edge a -+ b can carry a unit of flow from
a to b. A bidirected edge a «» b can either give a unit of flow to both a and b, or give no
flow to cither. A bidirected edge can be thought of as a special source that must give the
same amount of flow to both of its neighbors. The flow problem is to determine how much
flow can be delivered to a sink vertex .

Lemma 3.2. MDP can be reduced in log-space (O(logn) parallel time) to a unit capacity
bidirectional flow problem.

Proof: We transform MDP into a bidirectional low problem, where the flow corresponds
to a sct of disjoinl paths. Each vertex v is replaced by a pair of vertices v,,, and vy,
with a directed edge vy, — v, between them. For an edge (v,w) in the graph there are
directed cdges v,y — w;, and wyu: — v;n and a bidirccted edge v;,, <> w;, as shown:

Vin 1 Wout

Vout Win

There is a sink ¢, and for each vertex u,y: corresponding to u € U, there is an edge
Uyyut — L. The problem is to find a maximum flow to t. The bidirectional edges serve as
the sources of the flow. .

There is a dircct correspondence between a 0-1 flow of 2k in the flow graph and a
set of k disjoint paths in the original graph. Supposc the bidirected graph has a flow
of 2k. The flow is introduced on k bidirected edges. The flow introduced at v;, « v},
follows paths vinVoutViin - - Ujintjourl ANA V], U, V] 0 Yiinti ot to the sink. This
corresponds to the path u,; - - - vjvv'v| - - u, in the graph. Similarly, suppose we have a set
of k disjoint paths in the graph with their endpoints in U. For cach path we pick an cdge
(v,v') and introduce flow on the bidirected edge v,, « v!, . The flow then follows the two

'’

segments of the path to the sink. |

30

R

"’,."

MR 7 2 AN

"-

RO

IR

Lemma 3.3. Unit capacity bidirectional flow can be reduced in log-space to matching.

Proof: We use a reduction that is similar to the standard reduction of unit capacity flow
to bipartite matching [CSV] (Wag]. The handling of bidirected edges causes the reduction
to be to gencral matching instead of bipartite matching. A graph is constructed that has
a perfect matching if and only if the bidirected graph has a flow of size 2k. The maximum
flow is found by constructing graphs for each possible value of k. The flow in the network
can be reconstructed from a perfect matching.

The table below gives the graph to test for a flow of 2k in the bidirccted graph as
follows. The outdegree of a vertex v is denoted by out(v).

Bidirected Graph Matching Graph
Sink ¢ Vertices t,...,tak
Vertex Vertices 21,...,%0ut(i)
Edget — 3 Vertex 17
Edges (ﬁ’il)) sy (Z?)iout(i))
— —_— .
(1.7 ,.71)’ R (7'.7)]out(j))
Edge: — t Vertex
e —_ .
Edges (1t,11),..., (1, %0u(i))
— —
(lt ,t;),...,(zt ,tgk)
Bidirected Edge ¢t «» 3 Vertices 171, £72
Edges (171,%72)
(m9il)1 Ty (m’llbut(i))
(2.7"‘;,.7.1)’ R (1(:3;7juut(j))

There is a direct correspondence between a flow of 2k and a perfect matching. In a
perfect matching, if 17 is matched with j, there is flow from 1 —» 7, and if 17 is matched

with ¢, there is no flow on ¢ — j. For a bidirected edge ¢ « 7, if i7] is matched with 1,
and 133 is matched with j,, then ¢ & j delivers flow to both 7 and j, if 7] is matched with
172, then 1 « 7 does not deliver any flow.

We now prove using the above correspondence that the graph has a perfect matching
if and only if there is a flow of 2k.

Supposc the graph has a perfect matching. The vertices ¢, are matched for 1 <p <
out(i). Suppose a of the vertices 7, are matched to vertices of the form v and the other
out(t) — a vertices 1, are matched to vertices 1. There is a flow of a going into vertex .
Since there are out(z) vertices of the form 0, a of the vertices 1 are matched to vertices
vq, so there is a flow of @ out of 7. Ience, flow is conserved at the vertices, so it is a valid
flow. Since the vertices ty,...,¢y; are all mnatched with vertices of the form —1;?, the flow is
of size 2k.

For the other direction of the proof, assume there is a flow of size 2k. Suppose the
flow into ¢ is a. Then a vertices U7 and out () — a vertices 30 can be matched with vertices

5 IR S N S R FRERT SR R R . - R I I ST B B B R
PR O T T A e g e
DRSS RN SR o St ¥, N A S S A VR S SR AR A A

i, corresponding to 7. So all of the vertices associated with the vertices in the original

graph can be matched. The vertices i7; and 773 can be matched togcther if Row is not
introduced on © « 3. Since the flow is of size 2k, all the vertices ty,..., ¢ are matched.

An example of the reduction from bidirectional flow to matching is shown in the
following diagram. The matching illustrated with bold edges corresponds to a bidirectional
flow introduced on the edge b « ¢ that flows to t along the paths¢ — f —» tand b — a — .

ba b by cf

t, ty
Bidirected Graph Matching Graph

Combining the two previous lemmas and using the Karp-Uplal-Wigdcerson probabilis-
tic matching algorithm [KUW], we have the following thcorem:

Theorem 3.1. The maximum sct of disjoint paths problem can be solved by an RNC
algorithm. |

3.5. The Maximal Path Problem

In this section we present two algorithms for the maximal path problem. The maximal
path problem is:

Given a graph G = (V, E) and a vertex r € V, find a simple path P starting at

r such that P cannot be extended without encountering a vertex that is already

on the path.
Our results are that the restricted case of the maximal path problem for bounded degree
graphs can be solved in NC and the general case can be solved in RNC.

The maximal path problem can be solved sequentially by the simple greedy algorithm
discussed in Chapter 2. We showed that the greedy algorithm for constructing a maximal

32

LR AR

TR RN

By Py te v e,

s & a 8 oL o A G

L Il W

path is P-complete, so it probably cannot be sped up substantially with parallelism. Here
we show that by taking a different approach, the problem can be solved by a fast parallel
algorithm.

It is a significant result that the maximal path problem can be solved by a fast parallel
algorithm. The construction of a maximal path appears to be a very sequential process,
since to add a vertex to the path we need to know that the vertex is not already on the
path. The initial motivation for looking at the maximal path problem is its relationship to
depth first search. Any branch of a depth first search tree a maximal path. The maximal
path problem captures some of the difliculties involved with a parallel depth first search.
In the next section we describe an O(n'/2**) parallel algorithm for depth first search. The
algorithm works along the same lines as the maximal path algorithin and uses a number of
tools developed for it. However, our depth first search algorithm does not depend directly
upon the maximal path algorithimn.

Both of our maximal path algorithms use a divide and conquer strategy. A path is
found which allows the problem to be reduced to finding a maximal path in a graph of less
than half the original size. This path is referred to as a splilling path. If the graph has
a vertex of low degree, then a splitting path can be found relatively easily. However, the
general case is substantially more complicated. To find a splitting path in a general graph,
we use the probabilistic matching algorithm of Karp-Upfal-Wigderson. We first describe
the algorithm to find a maximal path in a graph with all vertices of degree less than d,
and then describe the algorithm for general graphs.

3.5.1. Maximal Path Algorithm for Bounded Degree Graphs

Let G = (V,I5) be a graph with all vertices having degree at most d. We give a
deterministic algorithm to find a maximal path in time O(d»log'c n). This gives an NC
algorithm for families of graphs with a degree bound of O(log’ n).

The basic step of the algorithm is to find a path that reduces the problem to inding
a maximal path in a smaller graph.

Definition 3.1. A path P starting from r is called a splitting path if V - P has at least
two connected components.

Lemma 3.4. If splitting paths can be found in time O(T(n)), then a maximal path can
be found in time O(T'(n)logn).

Proofl: Suppose P = ruj .- ug is a splitting path. Let u, be the fast vertex on P such
that u; is adjacent to at lcast two components of V - ru;---u;. Let C be the smallest
of the components of V — ruy.--u, adjacent to uj;, and let v be a vertex in C that is
adjacent to u,. If P’ is a maximal path from v in C, then ruy---u, P' is a maximal path
from r in V, so the problem is reduced to finding a maximal path in C. Since |C| < Z, it
takes at most log n iterations of finding a splitting path and reducing the problem to find
a maximal path. Ilence the maximal path problem can be solved in O(T'(n)logn) time.

N o

LR S
[] .

-

7

‘¢

»
e

g

y N

R
.

UM
DA

lp® o
A

it ywerwy nikd i ek Al asth Sl gl ani ma e o)
. .v.-‘.‘.“. PR S G LA -

We now describe how to find a splitting path. We first take care of the case where
the graph is not biconnected. If r has degrece one, then we can follow a path from r until
we reach a vertex of degree at least three, so we may as well assume that r has degree at
least two. If the graph is not biconnected, there is an articulation point v that is in the
same biconnected component as r. Any shortest path from r to v is a splitting path.

The more interesting case for finding a splitting path is if the graph is biconnected.
For the remainder of the scction we assume that G is biconnected. The basic idea in
finding a splitting path is to pick a vertex v different from r and find a path that cannot
be extended to contain any more neighbors of v. This cither gives us a splitting path or a
way to construct a maximal path directly. Let v be a vertex different from r. We construct

L ey Bl B 2

. A Ak a8 un

Y g

a path, one segment at a time, with cach segment going to another ncighbor of v without
passing through v. We stop when we cannot add another neighbor of v to the path. This
is done by the following simple algorithm.

VisitNeighbors(r, v)

begin
Let vy, ..., v, be the neighbors of v;
P
w e T,
Vie-V — v

for 1 <~ 1 to m do
if there is a path wP'v; with wP'v; C V' then

begin
P« PPy
W €= Uy
Vie V- wbl';
end
return P;

end. .

After we call Visit Neighbors, we add v to . There are three cases that can occur.
First, if P contains all of v’s necighbors, then Pv is a maximal path and we are done.
Otherwise if V - Pv has morc than one connected component, then we have a splitting
path. The last casc is that all the unvisited vertices are in a single component and some
neighbor of v is not on P. This case is handled by the following lemma.

Lemma 3.5. Let P = ruy---uxv be a path such that V — P has a single connected
component C. If v is adjacent to C but uy is not adjacent to C, then a maximal path can
be found by an NC algorithm,

Proof: Let u, be the last vertex other than v on P that is adjacent to C. There must be
such a vertex u, since we are assuming the graph is biconnected. Let zy---z; be a path
in C with u, adjacent to z; and v adjacent to z;. The path 7 u;zy - zjvup - ujyy 18
a maximal path. The path is shown in the figure below.

The individual steps such as finding a path between two vertices, testing for articu-
lation points, and finding connected components can all be done in O(log®(n)) time on
O(n?) processors. Since the problem size is reduced by at least hall every time a path is

'''''

''''''

I I;

found that splits the graph, no more than logn stages are needed. If all vertices have de-
gree at most D(n), no more than D(n) paths are found by VisitNeighbors. The algorithm
therefore runs in O(D(n)log®(n)) time on O(n?) processors. The restriction that all of the
vertices obey a global degree bound is not necessary for this algorithm to be a fast parallel
algorithm. It is only necessary that at each stage a vertex of low degree can be found. For
example, if the graph is planar, it is always possible to find a vertex of degree at most five,
so this algorithm runs in O(log®(n)) for planar graphs.

3.5.2. Maximal Path Algorithm for General Graphs

We now describe an algorithm for the maximal path problem in general graphs. This
algorithm also relies on finding a splitting path and reducing the problem to a problem of
less than half the size. The problem of finding a splitting path is much more involved than
in the previous algorithm. The discussion of finding a splitting path is divided iato two
parts. A set @ of vertex disjoint paths is said to separate the graph if V' - Q has at least two
connected components. We first show how we can construct a splitting path from a set of
paths that separates the graph. The construction is similar to the one for finding a splitting
path in a sparse graph discussed above. We then describe how the separating paths are
found. This is the most complicated part of the algorithim and relies on some very powerful
machinery The algorithm uses as a subroutine the algorithm for finding a maximum set
of disjoint paths described in Section 3.4, The resulting algorithm is probabilistic, but its
only use of randomness is in the matching subroutine in the algorithin for finding disjoint
paths.

We now describe how a splitting path is found. Once the splitting path is found,
the algorithm proceeds as the onc discussed above. We also assume that the graph is
biconnected. A splitting path can be found in a graph that is not biconnected as is done
in the bounded degree case.

We show how to construct a splitting path from a small set of vertex disjoint paths
that scparates the graph. Suppose @ — {Q1,...,Qx} is a set of vertex disjoint paths. A
subroutine that builds a single path using the paths in @ is used in the construction of
a splitting path. The routine Eztendl’ath(r,Q,V) constructs a path starting from r that
cannot be extended to include any more vertices of Q. In other words, if the constructed
pathis P = ruy---uy, then no vertex lying on any path in @ is contained in any connected
component of V — P adjacent to ug. Such a path is said to be mazimal with respect to
Q. EztendPath is essentially a sequential greedy algorithm. It builds the path by adding
segments of the paths in) to the current path for as long as possible. The only use of
parallelism is in the low-level routines which find shortest paths and maintain connected
components. The routine is:

vr., P

P e e

'~
N EstendPath(r,Q,V)
¥ begin
Pe—0ser
i while there is a path in V' — P from s to a vertex in @ do
begin
h Let suj ---ux be the shortest pathin V — P from s to Q;
o Suppose ux € Q;, and Q; = viq'uirq" v2 with |viq'| < lg"val;
"‘ P « Psu;---urq";
; Qi — unq;
f), 8 «— vy;
.4 end
% return Ps;
- end.
> Each iteration of the while loop halves the length of some path in @, so if there are
_:: initially ¢ paths, there can be at most clogn iterations. Each of the steps within the while
5 loop (such as finding shortest paths) can be done in O(log2 n) time, so the total time is
\j O(clog® n).
2 ‘o show how to construct a splitting path from a set of paths that separates the
., graph, we begin with the special case where we have a single path which contains all the
. neighbors of a vertex.
f:: Lemma 3.6. Let Q) be a path and v a vertex different from r that has all of its ncighbors

on Q. There is an NC algorithm that finds cither a splitting path or a maximal path.

x Proof: If v lies on @y, let @ == {Q’,Q"} be the itwo segments formed by removing v from
}_ @, otherwise let @ = {@Q;}. Construct a path P = ruy - - - u; that is maximal with respect
i to @ in V - v by calling FztendPath(r,Q,V - v). There are lour cases to consider.

; 1) Suppose uy is not adjacent to v. If there was a path from u; to v that contained
o no vertices of 2 other than ug then P could be extended to contain an additional

A neighbor of v without including v. Hence the component of V -- I that contains v is
. not adjacent to ug, so P is cither maximal, or V - P has more than one component.
. Assume that uy is a neighbor of v and let P’ == Pov.

o 2) If all neighbors of v are on P, then P’ is a maximal path.

. 3) If V — P" has more than one component then P’ is a splitting path.

x. 4) The final casc is when V ~ P’ has a single connected component C and v is adjacent
::: to a vertex in C. This is precisely the case that is covered in Lemma 3.5, so a maximal
.': path can be constructed. |

T4

h Theorem 3.2, Let Q = {Qy,...,Q«} be a sct of vertex disjoint paths where k < ¢ for
some lixed constant c¢. IfV - Q has more than onc connected component then a splitting
\ path or a maximal path can be found by an NC algorithm.

:' Proof: Use EztendPath to construct a path P that is maximal with respect to @. Suppose
" that P is not a splitting path, so that V - P has a single connected component C. If Q € P,
. then C is not adjacent to the last vertex of /2, so I” must be a maximal path. Assumec that
. Q@ C P and let z; and z5 be vertices in different components of V - @. If both z; and
: z2 had neighbors in C, then there would be a path from z, to zo with all of its interior
10

36
-
)

-:- N e TR

LS SA
» nl 2y

hl g - - » ». - - - - » _ s _® e oA, ® W, e . . - - - I R e - - - .
» - n" . Ul T RIS T S Tl S S Y » DR IR i T SN L S S SR AT S S U RS Y N P » . -« ® a

- "‘.\
-" \- \"' ‘ ‘- 1 > \..‘ Y

il el 3

i TR0

PR il B g W

| A ST g

JWLW T Ty ata d'a d'at‘s. d'n 8 s b0 b adl?, g ey L g'ad's §'s 8 & wd nd'R

vertices in C, but this would mean that there was a vertex of @ in C. Hence, either z; or
z, has all its ncighbors on P. The previous lemma then shows that a splitting path or a
maximal path can be constructed. |

We now show how to construct a small set of paths that separates the graph. The
paths that we construct are referred to as isolated.

Definition 3.2. A set of vertex disjoint paths @ = {Q),...,Qx} is isolated if every path
between endpoints of different paths has at least one interior vertex in Q.

A set of at least two isolated paths can be transformed into a set of paths that separates
the graph. Let Q = {Q;,...,Q«} be a set of isolated paths, and let z; be an endpoint of
the path @, and z; be an endpoint of @,. The paths Q' = {@; — z,,Q2 — 22,@3,...,Qx}
separate the graph with z; and z, in different components of V — Q’.

A set of isolated paths can be constructed from a set of paths by repeatedly combining
paths. A maximum sect of disjoint paths is found between the endpoints of the paths. If
a path P is found between endpoints of Q; and Q;, ¢ # j, then the paths Q,, P and Q;
arc joined to form a single path. Phases of joining paths are repealed until no 1ore paths
can be joined. The routine JotnPaths constructs a set of isolated paths. The input to
JoinPaths is a set of vertex disjoint paths Q@ = {@Q,,...,Q} and a set of vertices T not
on the paths. JoinPaths constructs a sct of isolated paths Q" = {Q1,. .. ,Q;} Iivery path
in @ is a segment of some path in Q'.

JoinPaths(Q,T)
begin
while the paths in @ are not isolated do
begin
Construct an auxiliary graph G' with vertices z, for cach Q; ¢ Q, and vertices v, for
cach v; € T. The edge (vi,v;) is in G' il (v;,v;) is an cdge in the original graph;
(zi,v5) 1s in G' if there is an edge from an codpoint of Q; to vj, and (z,,z;) is in
G' if there is an cdge between endpoints of Q; and Qj, t # 7;
Find a maezimum set of disjoint paths P = {P;,..., P;} in ' with their endpoints in
{11,. . -,Ik};
for ecach P, € P do in parallel
begin
Suppose P; = z,P/z; with i < j;
Q: — Q. P/ Q;; (joined appropriately)
Qi <9
T«T-",;
end
end
end.

Earlier in this chapter we showed how a maximum set of disjoint paths can be com-
puted in RNC by using matching. The manipulation of paths and the construction of the
auxiliary graph can be done casily in NC. To show that JoinPaths is an RNC algorithm,
we show that the number of phases (i.c. iterations of the outer loop), is O(log n).

37

LSl Sy S

y

Y XA

By N

IR

o o

P
»

N

Tae
.

l'.u "-‘.l‘.v Vs ,/./ |

Al A Ao 2 i w C B » 3
it e A e A e e Js M e A I Bk R 2 R g A Qs 3 ” e Y T T

» .".

.

> »

Lemma 3.7. The process of joining the paths {Q;,...,Q,,} requires O(logm) phases. R

g v VA,

Proof: Suppose k joins are performed at phase j. Any subsequent join must involve
at least one unjoined endpoint of a path joined at phase j. Thus there are at most 2k
subsequent joins. The number of paths that are joined at a phase is no greater than the
number joined the previous phase. Therefore, there are at most § joins at phase ;3 + 4.
Because there are at most ' joins during the first phase, there are O(logm) phases.

FISXYF.

AR PARAARAP

5
-~

In the maximal path algorithm, it is important to insure that the joining process does
not result in a single path. The following lemma gives a simple case where the joining
process does not form a single path.

'y B fo e

PR
)

AFLIR LS

Lemma 3.8. If at most 3 —1 joins are performed in the first phase of the joining process,
then there are at least two paths left when the joining process is done. '

PN
.

Proof: The total number of joins performed is at most 3 — 1 4+ 2(% - 1) =m — 3. The -
number of joins required to combine the paths into a single path is m - 1. | N

: The sct of paths joined in a single phase depends upon the particular set of disjoint
paths found by the probabilistic matching algorithm. The number of paths joined in a -
phase is however a fixed number, independent of the probabilistic choices made. We denote
the number of paths joined in the first phase of JoinPathsby J(Q,, ..., Q). The JoinPaths g
procedure does not actually require finding a mazimum set of disjoint paths to construct :
isolated paths, it is sufficient to find a mazimal set of disjoint paths. However, for technical D
reasons explained later, our maximal path algorithm relies on the fact that JoinPaths does
find a maximum sct of disjoint paths. A second rcason for using a maximum set of disjoint
paths is that it is not known how to construct in parallel a maximal sct of disjoint paths 2
without constructing a maximum set of disjoint paths.

A major portion of the maximal path algorithm is to construct a small set of isolated
paths. We construct a set of isolated paths @ = {Qy,...,Qxr} where 2 < k < 5. (There s
is nothing special about the the bound of five, it is just necessary to have k& < ¢, for
some constant ¢.) An initial set of isolated paths is constructed by calling JoinPaths(V, 0) v
X (treating each vertex as a path of length one). If we arc very lucky and a single path is
ks constructed, then we can find a path starting at r that contains at least half the vertices
and reduce the problem without bothering with a splitting path. If between two and five

\.‘- \ .l .' .' .'.

P ARD D

3r o -

]

& paths are constructed, a splitting path can be found directly, otherwise the number of X
. paths must be reduced. The basic idea is to discard some of the paths and use the vertices 5
A of the discarded paths as well as the vertices not on any ol the paths to join the remaining '\
paths. This process is repeated until between two and five isolated paths remain. It is N
easy to reduce the number of paths significantly with a phase, since any number of paths ‘
; may be discarded. It is necessary to make sure that at least two paths remain when the :
. paths arc joined. 3
l' The algorithm for reducing the number of paths works in phascs, where cach phase "'
reduces the number of paths on hand by at least a factor of %. A phase starts with
a set of isolated paths @ = {Qy,...,Qm}. To reduce the number of paths in @, we -
. choose a suitable k and replace @ by {Q,,...,Qx} and join the paths in the new Q. The “
" first value of k that we try is k = 3’;3. If J(Ql,.-.,ngg) < 7 — 1, then Lemma 3.8 :::-.
38 <

guarantees that the paths do not collapse to a single path. Suppose J(Q,,...,Q 3_‘_11) >

Since J(Q1,...,Qm) = 0, there is a k > 97"9 such that J(Qy,...,Qx) > T -1 and
J(Q1,...,Qr41) < T — 1. This value can be found by checking all values of k in parallel.
This value of k still might not be satisfactory, since joining @, ..., Q« could causc the paths
to collapse to a single path, while joining @, ..., Qx4 might not give enough reduction. If
this is the case, we find a segment P of Qi such that T -2 < J(Qy,...,Q¢, P) < T -1
If we remove a vertex from Q,;, we change the number of joins in the first phase of
JotnPaths by at most two. This is because we change the auxiliary graph used in JoinPaths
by two vertices. When finding a maximum set of disjoint paths in a graph that has been
altered in this way, the number of paths found changes by at most two. This “continuity”
property is why we chose to use a maximum set of disjoint paths instead of settling for
maximal. We can find this segment P by testing cach of the initial segmnents of Q4 in
parallel. When we join paths, we guarantee that the number of paths is reduced by at

least 7 — 2 since the first phase performs at least that many joins.

ReducePaths(Q = {Q1,...,Qm},V")
begin
if J({Ql,...,Qg‘ﬂ}) < 7 —1then
JoinPaths({Q, . .. ,Qa_:_.},V' U {Q:STm v Q@ml)s
else
begin

Find a k > :—’—;"» such that J(Q1,...,Q:) 2 T —1and J(Q1,...,Qxi1) <}
Suppose Qi1 = p1-**pj;
Find an initial segment P = py---p; of Qi such that
m <@ @ P) <
JoinPaths({Q1,...,Qx, P}, V' U{Qri3,-..,Qum}U{pi' 11 Pi});
end

end.

This completes our description of the pieces of our algorithm for finding a maximal
path. We now put them together and give the full algorithm.

MazimalPath(V,r)
begin
P «- FindSplittingPath(V, r);
if P is a maximal path then
return P;

Let ru;---uy be a subpath of P such that V — ru;-..ux has at least two connected
components adjacent to ux. Suppose C is the smallest of the componcents adjacent to
ur and v € C is adjacent to ug;

P' «— MazimalPath(C,v);
return ruj - --ug P';
end.

FindSplittingPath(V,r)
begin
if V is not biconnected then
begin
Let v be an articulation point in the same biconnected component as r;
Let P be a shortest path from r to v;
return P;
end
else
begin
comment First we find a set of paths that separates the graph;
Q={Q1,-..,Q@m} « JoinPaths(V,0);
if m =1 then
reduce the problem directly;
V' — 9
while m > 5 do
ReducePaths(Q,V"');
Let z; be an endpoint of @, and z2 be an endpoint of Qa, z1,z2 # r;
Q' —{Q1-2z1,Q1—22,...,Qm};
comment The paths Q' separate the graph, we now find the splitting path;
P « EztendPath(r,Q',V);
if P is a splitting path or a maximal path then
return P;
without loss of generality, assume z; has all of its neighbors on P;
if z; € P then
Q" « {Py, P2} where P, and P; are the segments of P — z1;
else
Q" — {P}
P « ExtendPath(r,Q",V — z1);
if P is a splitting path then
return P;
else if Pz, is a splitting path or a maximal path then
return Pzy;
else
begin
Construct a maximal path P' using Lemma 3.5;
return P';
end

P RS P X A 4

AR
v ol

Fig
LSS

end
end.

Each of the calls to MazimalPath reduces the problem by half, so it is called at
most logn times. The most time consuming steps in FindSplitlingPath are the calls to
ReducePaths. ReducePaths runs in polylog time and is called O(logn) times so the entire
procedure runs in polylog time. Hence, we have the following theorem:

'l“'l'
PR

AR
,

Theorem 3.3. The maximal path problem is in RNC.

R R S

RIS |

80y

3.6. Depth First Search

In this section a parallel algorithm for depth first search is described. The depth first
search problem is:

Given a graph G = (V, F) and a vertex r € V, find a spanning trce T of G that

could be constructed by some depth first search of G with root r.

Our algorithm runs in O(\/fllog’C n) and uses a polynomial number of processors. The
original motivation for looking at the maximal path problem is its rclation to depth first
search. Any branch from the root to a leaf in a depth first search tree is a maximal path.
The maximal path algorithm does not apply directly to give a fast parallel algovithm for
depth first search, since O(n) maximal paths might be necessary to construct a depth first
search tree. However, the gencral techniques and tools developed for the maximal path
problem are used for depth first search.

The depth first search algorithm uses the same strategy as was used for finding a
maximal path. A partial solution is found that allows the problem to be reduced to
smaller problems which are solved recursively. The algorithm finds a set Q of disjoint
paths such that the sizce of the largest connected component of V - Q is less than %n.
These paths are referred to as a separating set of paths. Note that this usage of the term
separate differs from our usage in the description of the maximal path algorithm. An
initial segment of a depth first search tree containing @ is constructed. Depth first search
trees are then found for the remaining components. Since the problem is halved at each
level, the depth of recursion is at most logn. The procedures for finding separating paths
and constructing an initial segment of the tree both take O(y/nlog"n) time. We first
describe the construction of the initial segment and then discuss the more complicated
step of finding the separating paths. '

The routine InitialSegyment is given a set of disjoint paths @ and constructs a subtree
T" of some depth first scarch tree T with all the vertices of Q contained in 7. In the depth
first search algorithm, there will be O(y/nlogn) paths in @ when InitialSegment is called.
InitialSegment is essentially a scquential algorithm; however it uses the parallel routine
LztendPath described above. InitialSegment maintains the connected components of the

vertices not in the subtree T'. A component is said to be active if it contains a path from
the set Q.

InitialSegment(Q, r)
begin
T e r,
while there is an active component of V — T do
begin
Let v be the lowest vertex on T' adjacent to an active compouent C of V — T';
P« ExtendPath(v,Q,C);
Add P to T';
Recompute the connected components of V - T7;
end

end.

P

L)
et Y Y
)

¢ ‘("f.
» v,
)

LS
.

-

- v %"‘
‘l':"'"" N

"'b;
P
PR

et T
. .
L

) e,

VA
-

P2

NN
A

o

‘e % ‘l TA,

. -'.'.'"."'a P

t

N
LR
Por e,

1, "

Y Y Yr)
o e

*, .l L

ke)
oy
&

o

S h NS,
I’- t‘n’ f.t

ALY

B

Each phase of the routine EztendPath reduces the length of some path in @ by a factor
of at least one half. If there are initially m paths in the set @, then InitialSegment will
take O(m log* n) time.

Lemma 3.9. The tree T' constructed by InitialSegment can be extended to a depth first
search tree.

Proof: It suffices to show that there are no paths between separate branches of T that
have all their interior vertices in V — T”. This condition holds throughout the execution
of InitialSegment since the extensions are made at the lowest vertex adjacent to some
component. | ’

We now show how to find a separating set of paths. We construct a set @ of disjoint
paths where Q contains O(y/nlogn) paths and the largest component of V -- Q has size
at most 7. The procedure runs in O(y/n log” n) time. The routine Separate constructs a
set of paths and then attempts to reduce the number of paths while kecping the connected
components of the vertices not on the paths small. The paths are reduced by joining
them together or by removing vertices from them. The routine maintains several sets of
paths. The set @ contains paths that are in the separator. Once a path is put into Q it is
committed to the scparating set and is not he removed. The set S stores the paths that
are currently being worked on. The set R is used for temporary storage; paths are put
into R to set them aside for the next phase. The vertices not on any of the paths in @, R,
or S arc in a set 7. The size of the largest component of T is at most 5. The algorithm
runs until B and S are empty. .

In Separate an iteration of the outer while loop is referred to as a phase and an
iteration of the inner while loop is a subphase. Each phase halves the number of paths in
S. A subphase reduces the length of cach path in S by one. Subphases are repeated until
all of the vertices in paths of S have been moved to R or T. The paths of R are then
moved back to S for the next phase. Phases are repeated until R and S arc emipty. In the
routine below, Join(S, T) is a procedure that performs the first phase of JoinPaths(S,T').
Join(S,T) finds a maximum set. of vertex disjoint paths in 7" between the endpoints of the
paths in S. The paths in S arc then joined using the disjoint paths that were found.

Separate
begin
Q-0 R0, T 9
S «V;
while S # 0 do
begin
while S # @ do
begin
Join(S, T);
Move the joined paths from S to R;
Move one endpoint of each remaining path in S to T;
if there is a component in T of size > 7 then
Fix the component size by moving a vertex from T to @;
end
S~ R; R 0

42

S, P W Y e WS

-y TR

RIS

. s
s

o

" ‘l 5 .I 'I ‘-l

s "«'..’.".,' ;

i

s

-
" .l »

A SE A A L Sl AL £ S0 b GalL ARl Sl ie B Sul Al Aa gt DA A A p ol pa b N . B0t le 25 28n 210 S Sin B4 Sin TS YEWEWS

[N - ”
o ¢
L P
? :
; Move paths of length > \/n from S to Q; -
end <
end.
N The goal of the routine Separate is to remove all the paths from S and R while making N
3 sure that the largest connected component of T remains of size at most 5. Separate N
A accomplishes this by alternately joining paths of S and by moving some vertices from "
paths in S to T. The paths are removed in two different ways. When paths are joined, .
any paths of length at least \/n are put into Q. The other way paths can be removed is if .
" all of their vertices are put into the set T'. 3
A subphase begins by joining as many paths as possible using the vertices of T. The
'; paths of S that are joined are then put into R and set aside until the next phase. The
' next step is to move one endpoint of each of the paths remaining in S to T. The moving
2 of endpoints accomplishes a dual purpose; it makes new vertices of S endpoints, allowing -
) additional joins in the next subphase, and reduces the lengths of the paths in S. Before -3
:: the endpoints are removed, each connected component is adjacent to the endpoints of at :
- most one path. This means that when the endpoints are moved from S to 7', the only way ¢
] components of T" are mcrged is if they are adjacent to the endpoints of the same path in
. S. At most one compoucent of size 3 can be formed each subphase. If a large component N,
xt is formed, then removing the endpoint that caused it to merge reduces the components to By
- size less than 7. When the vertex is removed, it is placed into @ as a path of length one. R
= The following lemmas establish that Separate constructs the desired separator in
- O(y/nlogn) time.
- Lemma 3.10. The largest connected component of T has size at most 3.
-.:.j Proof: The only time vertices are added to T is when endpoints of paths in S are moved .
::Z; to T. When this is donc, if a component of size greater than 7 is formed, a vertex can be A
moved from T to Q to reduce the components to size at most 3. |
t B
. Lemma 3.11. There are at most y/n subphases per phase. A
. Proof: At the start of a phase, the paths in S have length at most /n. Each subphase "
' reduces the lengths of all the paths remaining in S by one.
o Lemma 3.12. The number of phases is at most log n. '
.\ -
, Proof: Fach path at the start of a phase is the join of two paths from the previous phase, .
- so the number of paths in S is halved by each phase. | :
. Lemma 3.13. When Scparate is finished, there are O(y/nlogn) paths in Q. X
N Proof: At most y/n paths of length /n can be placed in Q. Each subphase places at 3
" most one singleton in Q. Since there are at most \/nlogn subphases altogether, there are -~

) O(y/nlogn) paths in Q. |

A subphase takes polylog time since the time it takes is dominated by the time it takes
to find a maximum set of disjoint paths. Since Separate has at most \/nlogn subphases,
Separate runs in O(y/nlog" n) time. The resulting algorithm is probabilistic since it uses

o v e LR

43 i

[T

0
¥,

'.- Pl ¥ St Ae N

XY LSRN h

T

.
”
<
2
v
o
)

the algorithm of Section 3.4 to find a maximum set of disjoint paths. The depth first search
algorithm does not actually require a maximum set of disjoint paths, it would suffice to
find a maximal set of disjoint paths. However, as was mentioned above, it is not currently
known how to construct a maximal set of disjoint paths without finding a maximum set of
disjoint paths. For graphs with bounded degree, the deterin :istic algorithm for finding a
maximal set of disjoint paths can be used, so for that restricicd case the depth first search
algorithm is deterministic with approximately the same time bound.

3.7. Discussion

In this chapter we have presented parallel algorithms for several path problems. The
major results of the chapter were that a maximal path can be found by an RN C algorithm
and that a depth first scarch tree can be constructed in parallel time O(n!/2+¢). The
algorithms of this chapter illustrate a number of techniques for parallel algorithms. None
of the algorithms depends on path doubling, although path doubling is present in a number
of implementation details. The algorithm for finding a long path used a novel probabilistic
approach. Probabilistic methods seem important for quite a few parallel algorithms. The
algorithms for finding a maximal set of disjoint paths and the maximal path algorithm
both make use of the iterated tmprovement strategy. The maximal sct of disjoint paths
algorithm bhuilt up its solution by adding paths to the solution and the maximal path
algorithm reduces the size of a separator by joining paths. The algorithm for finding a
maximum set of disjoint paths reduced the problem to matching.

There are a number of open problems related to these path problems. By far the
most important open problem is whether depth first scarch can be solved by an RNC or
NC algorithm. The major obstacle to speeding up our algorithm to an RN C algorithm is
that it appears diflicult to reduce the lengths of the paths substantially when joining paths
while still making sure that the connected components of the vertices not on the paths
remain sinall. Although these difliculties are technical in nature, it might be necessary
to take a different approach to get a substantially faster depth first scarch algorithm. A
second interesting open problem is whether the maximal path problem can solved in NC.
One way this could be done is to find a deterministic algorithm for matching. It would
also be interesting to find a siipler algorithm than ours for the maximal path problem,
even if it still relied on randomness. Our results on the maximal path problem and depth
first scarch do not carry over to dirccted graphs; the directed variants of the problems are
open. A final open problem is whether a maximal set of disjoint paths can be found by a
last parallel algorithm without using matching.

44

‘7

AR

A,]

(N ng Y

"

Chapter 4 Approximating P-Complete Problems

4.1. Introduction

In this chapter we investigate various ways of finding approximate solutions to P-
complete problems. The type of approximation that we are interested in is fast parallel
algorithms that give solutions that are close to the desired solution. We present results
for parallel approximation of P-complete problems that are very similar to the results on
sequential approximation of NP-complete problems.

There arc a number of reasons to look at approximating P-complete problems. The
main reason is since P-complete problems probably are not amenable to fast parallel so-
lution, it is important and interesting to sec what can be done on these problems using
parallelism. A second reason to look at approximation is to develop the theory of paral-
lel approximation in analogue to the sequential theory. The problems which arise when
looking at approximate solutions are often problems that are close to the “boundary” of
what can and cannot be done efliciently with parallelism, thus they are important for the
general study of parallelism.

In this chapter we look at a number of P-complete problems and examine to what
extent they can be approximated by fast parallel algorithms. The first problem is the high
degree subgraph problem. This problem is to find a vertex induced subgraph of a graph
that has all vertices of degree at least as big as some given k. We show tight bounds
on the degree of approximation achievable for a variant of this problemn by a [t parallel
algorithm assuming that P/ NC. The next topic that we look at is approximating number
problems and show that it is very similar to the sitnation for sequential computation.
Some P-complete number problems can be solved by fast parallel algorithins when the
numbers are small. We give two examples of problems that can be approximated very well
by solving restricted cases of the problem and then relating the solution to the original
problem. We define strong P-completeness analogously to strong NI’-completeness so that
we can identifly number problems that remain diflicult even if the numbers involved are
small. We show that the problem of computing a first fit decreasing bin packing is strongly
P-complete. We also show how a related packing scheme which performs as well as first
fit decrcasing can be computed in NC.

4.2. The Iligh Degree Subgraph Problem

The high degree subgraph problem is:

Given agraph G - (V, E) and an integer k, find the maximum induced subgraph

of the graph that has all vertices of degree at least k.
It is interesting that this problem is P-complete since it is so simple. Most known -
complete graph theory problems have some other device, such as weights or an ordering,
that make them diflicult. However, this problem could be called a “purely combinatorial

45

§'~'. .--'.~'-~.-'.'
AT S e

L .8
v, 4, A

F P P R I B
=)

()

»
N ettty
PN

LA EDAL Y

'-':‘u‘l"?‘

P

5 N

'-"l '1"':‘ v)

- v .
LA »
o o

o o

“e VW
o »

i_"', X

v e v
DG

AN

UV

[NN
e

problem.” The high degree subgraph problem can be approximated in several diflerent
ways. In the next section we derive bounds on the degree of approximation that is possible
for a variant of the problem. We also discuss other approaches that construct subgraphs
with all vertices of high degree.

The high degree subgraph problem can be solved by a simple sequential algorithm.
The algorithm discards vertices of degree less than k one at a time until all vertices have
degree at least k or the graph is empty. The correctness of this algorithm follows from
two casy lemmas. The first lemma establishes that there is a unigue maximum induced
subgraph of G with minimum degree at least k. We denote this subgraph by DS (G).

Lemma 4.1. Let S and T be maximum induced subgraphs of ¢ that have minimum
degree at least k, then S =T.

Proof: The induced subgraph on S U T has minimum degree at least k. Since S and T
are maximum, |S| = |T| =|SUT|,s0o S - T. |

Lemma 4.2. The sequential algorithm outlined above finds HDS(C).

Proof: Let § be the induced subgraph found by the algorithm. Since the vertices of S
have degree at least k, § C HDS,(G). Suppose that S # HDS(G). Let v be the first
vertex of DS (G) discarded by the algorithin and let T be the graph just before v is
discarded. Since v has degree less than kin T and DS (G) C T, v must have degree less
than &k in 1/1DS(G), a contiwdiction. Ilence S = HDS(G). B

It is possible that ITDS,(G) is emply. The following lemma due to Erdds [19] estab-
lishes an important case where [1DS () is noncmpty.

Lenuma 4.3, Il a graph has n vertices and m edges then it has an induced subgraph with
m l

minunum degree al least ‘ i’

Proof: The proofis by induction on the number of vertices in the graph. The vesult holds
for graphs consisting of a single vertex. Suppose the result holds for all graphs with fewer
than n vertices. Let G be a graph with n vertices and m edges. If all vertices of ¢ have
degree at least [';’" [, then the graph itsell is an induced subgraph with minimum degree
at least [': } Otherwise we can delete a vertex of minimum degree along with its incident
edges, leaving a graph with n -+ 1 vertices and m -k > m - ,r':] edges. By the induction
hypothesis the remaining graph has an induced subgraph with minimum degree

(t".;q\/ m - 0] 4{{{&?} =,
n—1]"7" n-—1 T in-1 n

The high degree subgraph problem can be reformulated as a decistion problem HDS,
by asking if a specilic vertex v is in 1IDS (7). We show that 1IDS is I-complete by giving
a reduction from the monotone circuit value problem. We also give a stronger result by
showing that it is P-complete to determine il 1/1DS((7) is nonempty.

46

s N
»

A

[

-~
«

W ... oy N

ry e s

NN

. s,

ooy

-
s 8 2 2 v s W

RS AAL

["..\.'-‘-‘34

YNy o

NESS Tttt a N

% % %

tat el e,

& A 8 A

Theorem 4.1. HDS is P-complete.

Proof: The proof is a reduction from the monotone circuit value problem. The AND
and OR gates are assumed to be connected to one or two other gates, and the inputs are
assumed to be connected to just one gate. Let f = ,...,3, be a monotone circuit. The
inputs and outputs of cach gate are assumed to be numbered, with the connections given
explicitly. For example, if By receives an input from £;, we might be given that output 1
of B, goes to input 2 of B;. We construct a graph ¢ with a distinguished vertex v such
that v € IIDS;(G) il and only if the circuit evaluates to true.

The gate By is simulated by a collection of vertices. There is a vertex k in the subgraph
associated with fi that is in /IDS3(G) if and only if §; evaluates to true. The subgraphs
for an AND gate and an OR gate are shown below. The vertices k; and k; are associated
with the inputs of B, and k| and k', are associated with the outputs of 3. The subgraph
for a O-INPUT Sy is a singleton vertex k| and the subgraph for a ILINPUT 3, is a clique
of four vertices with one of them k. The subgraphs are connected together in a manner
that corresponds to the gates of the circuit. If output p of 3, goes to input q of fy, then
there is an cdge from j,, to k,.

The circuit is simulated by computing IDS3(G). This can be done by discarding
vertices of degree one and two until all vertices have degree at least three. A gate Fi
receives a false input at k, if the cedge going into k,, is removed. All the vertices of the
subgraph associated with an AND gate are removed if it receives a single false input, and
all of the vertices of an OR gate arc removed if it receives two false inputs. The vertex
associated with a O-INPUT is always removed, and the vertices associated with a I-INPUT
are never removed. Note that values do not propagate backwards. For example, if an cdge
going into k), from a different subgraph is removed, the vertex kj, is not removed because

of that. [

AND gate OR gate

Our proof that 1IDS is P-complete is just for k = 3. However, it is not difficult to
modifly the proof to show that the problem is P-complete for any k& > 3. For k -: 2, it is
possible to find HDS(G) with an NC algorithm. The algorithm for computing /DS ,(G)
has log n phases, where each phase removes all chains. A chain is a palh of vertices that
starts with a vertex of degree one and contains no vertex of degree greater than two. The

" s o 8 ..-,-.'r." ¢

PR KA

Yaalsl o asl oy

L ST
Cot I
NN N

1

r o e .
. a
108, Yt N

[
-

PR RRA
'j_ ',N‘r"rl

hY
o
N

chains can casily be identified by path doubling techniques. When the chains are deleted,
more vertices of degrec one might be created, however cach new vertex of degree one
requires the removal of at least two chains, so the number of chains decreases by at least
half cach phase.

The P-completeness result can be made stronger in the scnse that the problem of
determining if /IDS(G) is nonempty is P-complete. In the next section, we discuss the
problem of determining the largest & such that /DS, ((;) is nonempty. The stronger P-
completeness result shows that this problem probably cannot be solved exactly by an NC
algorithin.

Theorem 4.2. The problem of determining if HDS((G) is nonempty is P-complete.

Proof: The proof is a reduction from the monotone circuit value problem. The construc-
tion of the previous theorem is modified so that given a monotone ciremit 3 4, ..., By,
a graph G is constructed such that HDS5(G) is nonempty if and only if the output of the
circuit is true.

The subgraphs and conncctions for the AND) gates, OR gates, and O-INPUTS are the
same as in the previous construction. The subgraph for the INPUT g is:

If the gate 3, reccives an input from f, there is and edge from k| to j,. There is a binary
tree that has as its leaves the vertices ky of the T-INPUTS 3. The output vertex of the
subgraph for the final gate is the root of this tree.

The computation of IDS ;(G) simulates the circuit in the same manner as the previous
theorenm. I the final output is removed, then all of the vertices of the tree are removed and
then all of the 1HINPUTS are removed. This causes all of the vertices to be removed, so
1IDS (G is empty. If the final output is not removed, then the vertices of the tree and the
1-INPUTS arc not removed, so a subgraph with minimum degree three is left. ||

4.3. Approximations to the High Degree Subgraph Problem

If & problem is known to be P-complete, there is little hope of findigr an A C algorithm
to solve it. As is often done with NP-complete problems, we can lower our sights and
attempt to find an approximate solution. The high degree subgraph problem is well suited
for approximation since it can be rephrased as an optimization problem. The optimization
problem is to ask what is the largest k& such that /DS, (G) is nonempty. This value is
denoted JIDS(G). 1t follows from Theorem 4.2 that it is P-complete fo compute HDS ().
An approximate solution to this problem is to find a k such that 1HDS(G) >k ~ M 1HIDS(G)
for some fixed ¢ > 1. We say that this is an approximation within a factor of ¢. We show
that this high degree subgraph problem can be approximated to a factor of ¢ for any ¢ > 2

18

. r
~

FA T

,.“. '-‘ LSRN NG

s, f, '-' ‘7‘ \‘ '-"b:

' A

[

in NC, but cannot be approximated in NC for ¢ < 2, unless P = NC. This result is
analogous to a number of results on approximating NP-complete problems where lower
bounds on the degree of approxiniation are known assuming that P # N P. For example
it is known that graph coloring cannot be approximated to a factor of less than two [GJ1]
and precedence constrained scheduling cannot be approximated to a factor of less than 4

[LR]. :

Theorem 4.3. For any constant ¢ > 2, the optimization problem can be solved by an NC
algorithm to a factor of c.

Proof: Let € > 0. The following routine Test(V, k) returns an answer which is either

“the graph has no subgraph with minimum degree k7, or “the graph has a subgraph with
minimum degree at least %‘i k”.

Test(V, k);
begin
while V # @ do
begin
U:-{v ¢V]|deg(v) < k};
if |U] < (]V] then
return “lIDS(G) > l,f’—k”;

V.=V U,
end
return “lIDS(C) < k7,

end.

Ilach “teration of the while loop discards all vertices with degree less than k. Since a
constant, fraction of the vertices is discarded in each iteration, there are O(log n) iterations.
The algorithm can be implemented so that a single iteration takes O(logn) time, so it is
an NC algorithm. 11 Test(V, k) terminates with an emply sct of vertices, the graph does
not have a subgraph with minimum degree £, Suppose that Test(V, k) terminates with o'
vertices, dlaiming that 11DS(G) > '2' k. The number of edges when Test(V, k) terminates
15 al Jeast '2‘ kn', so by Lemma 4.3, G has a subgraph with minimum degree at least
-l-;—'~k. The procedure Test(V, k) is applied for cach value of k£ between | and n. A value
k is found where the graph has a subgraph of degree at least ' k but no subgraph of

degree k£ 1 1. This gives an approximation to within a factor of 12(. |

The next theorem shows that the previous result is essentially the best possible as-
suming that P/ NC. We show that a circuit can be simulated by a graph which has
HDS(G) 2k il the output of the civenit is frue and HDS(G) -~k 1 Vit is false. I the
problem could be approximated by a factor of less than two then the following construction
could be used to solve the monotone circuit value problem.

factor less than two.

Proof: This theorem is proved by giving a log-space transformation of & monotone civcuit
to a graph G which has HDS(G) 2k il the output of the cirenit is true, and HDS(G) =
k- 1if it is false. The fignres are for k3, the generalization to other values of k is

19

v .
e

-.'l"i' 4

oay

AT no,

vt e e e
vy
.

.

LSl

-

straightforward. For each AND and OR gate there is a subgraph. These subgraphs are
connected together in a manner that corresponds to connections of the circuit. There are
also subgraphs which are called expanders. An expander is shown below. The expanders
are used to fanout values and are also used in the AND gate. The vertices 7y,...,1; are
the expander’s inputs and oy,...,0; arc the expander’s outputs. An expander consists of
a number of levels of k vertices each. Adjacent levels are connected by complete bipartite
graphs. Each level is connected to an output of the expander. The expander is terminated
with two layers that have &k + 1 vertices. The vertices of the last level are joined to form a
k + 1 clique.

,/,; 41{/4

e ««\
PNS '/A

The OR and AND gates arc illustrated in the figures below. The gates have two
sets of input vertices ©y,...,2, and z},... ,i;\and a set of output vertices oy,...,0x. The
output vertices of a gate arc connected to an expander which is connected to the input

vertices of the appropriate gates. T'he expanders fanout values and insure that information
is propagated correctly. In the AND gate, the Jong rectangle is a A% -expander. The output
of the final gate is connected to an expander which goes Lo all of the imput vertices of
gates that correspond to connections [rom [-INPUTS in the circuit. The input vertices of
gates that receive L-INPUTS have degree 2k and the input vertices of gates that receive
0-INPUTS have degree k.

The circuit is simulated by computing IIDSy 2(G). This “cvaluates” the gates in
topological order. A value is represented by a set of k vertices. A group of vertices all with
degree at least 2k indicate {rue and a group of vertices of degree at most k- 1 indicate false.
In computing DS 42(G), the vertices indicating false values are removed. If the input
vertices 1,,...,%; of an expander have degree k, then all of the vertices of the expander
are removed, whereas if they have degree 2k, they arc left. This is the manner in which
values are propagated. When an AND gate is simulated, all of its vertices are removed if
at least onc of its inputs is false, and all the vertices of an OR gate are removed if both
of its inputs arc false. If the output of the final gate is false, then the expander that goes
back to the 1-INPUTS is removed. This causes all of the remaining vertices to be removed,
so ITDS(G) < k + 1. If the final output is frue, then a graph with minimum degree 2k is
left, so TIDS(G) = 2k. IDS(G) > k + 1 since an expander has a subgraph with minimum
degree k + 1. |

50

X e e -y

AR

y v -
.

- 7
s

.... .
s
Y ‘.':.l‘l'ls

1NN Aﬂ'l,' o

s)

e Ny
2 gt t R

LMY \

OIS

. P X,
-_,‘q,'-.n,'.‘-:

v

‘,"f‘.?, ‘

Ay

R

7 YRR

-. .’v

OR gate

LNy

. :
3K sz 3

- N

2944222422229 ‘- 2e——2eoe 3 | ::
VVVVVVVVV S

R

v

N

¥/

0y 02 03 :}_

-

N

| AND gate using a k3-expander '
{ 4.4. Finding a High Degree Subgraph
: A sccond approach to approximating the high degree subgraph problem is to attempt t_-

to find a subgraph with high degree without insisting that it is the maximum subgraph with

that degree. We discuss two algorithms for this type of approximation. One algorithin

discards vertices of low degree until all vertices have a certain degree. This algorithm
constructs a supergraph of /DS (G). The algorithm exhibits an interesting relationship "y
between the time it takes and how. good the approximation to /DS () is. The second y
approach is to relate a high degree subgraph to a mazimum densily subgraph. The problem
of constructing a maximum density subgraph can be reduced to a unit capacity network -
flow problem, so it can be solved in RNC.

......
.
PatirS

An approximation to the problem of computing HDS(G) is to find a supergraph of
HDS(G) that has all vertices with degree at least ’: The closer ¢ is to one, the better
the approximation. The result of the previous section shows that this is not possible with
an NC algorithm for ¢ a constant less than two, unless P = NC. In this section we give
a family of algorithms for this type of approximation. The algorithm A approximates to
a factor ¢ 4(n) and runs in time Ty (n). The degree of approximation improves as the run
time increases.

The sequential algorithm for computing 71DS . (G) discards vertices of degree less than
k until all vertices have degree at least k. The reason that this algorithm appears inherently
sequential is that it is diflicult to predict which vertices eventually have degree less than k.
When vertices are discarded, some other vertices have their degrees reduced to less than k,
and then they are also discarded. It is possible that all vertices that initially have degree
at least k arc removed. One way to control the number of vertices that are discarded is to
throw out vertices of degree much less than k. If vertices of degree 2 arc removed, then
the number of vertices that initially have degree at least £ that get removed is bounded.
This is formalized in the following lemma:

Lemma 4.4. IfG - (V, E) if an n vertex graph with p vertices of degree less than k, then
G contains a subgraph with minimum degree : that has at jcast n — 3 p vertices.

k
1
at least 'j Let Si be the sct of vertices that initially have degree at least k that are
removed. Before a vertex of Sk is removed, i, must have had ;k cdges removed that go to

Proof: Suppose vertices ol degree less than 7 are removed until all vertices have degree

it. Bach vertex that is removed can have al most * edges which go to members of Si that
4 g k

]

are removed after it is. Putting these two [acts together we have “—4'9 |Sk| < ﬁ;) - f‘

Skl, so
[Se] < 2. e { T ‘Lices v
S| < L. Hence at most Jp vertices are removed.

The lemma provides a way to find a subgraph with minimuam degree '; in O(n'/? log n)
time assuming that the graph has a subgraph with minimum degree k. 1T 1IDS, (G) is
emply, then the algorithm might terminate with an empty set of vertices. The algorithm
is:

FindSubyraph1(V, k)
begin
while at least n'/? vertices have degree less than & do
remove vertices of degree less than k;
while there is a vertex of degree less than :— do

rcmove vertices of degree less than %;
end.

Each iteration of a loop takes O(logn) time. The first loop cannot be executed more

than n'/? 1/2

times since it removes at least n vertices cach iteration. Lemma 4.4 insures

that the second loop does not remove more than Iznl/‘2 vertices, so it also has O(n'/2)
iterations.

This algorithm can be generalized to one that uses more than two phases of discarding
vertices. In FindSubgraph?2, the approximation factor and the runtime depend upon the
function f(n). The algorithm FindSubgraph! corresponds to FindSubyraph? with f(n) =

Y NS

it R

~

P s

e "

e e

«

Ny

“e '-"‘
E AN

e e Ty

A

.
% s

s
4 '
s)

A 5 % N
AN

o

.

E

Y

v e

» ¥ ot e s -
P A M
13

. ‘\ '.- ’.. -"c..".'
* '. l' \. - 2 '

v

g e

| Ay

X 4
fatella

[N

-

- ".. ' (- ..-

.
LR N

i ey

.

W aoa &y A

X
L4
ld
&

4

n'/2. The algorithm FindSubgraph? maintains two counts, bound and threshold. A phase
consists of discarding vertices with degree less than bound. As long as there arc at least
threshold vertices of degree less than bound, then vertices with degree less than bound are
discarded. When the number of vertices of degree less than bound is smaller than threshold,
the values of bound and threshold are changed. Phases are run until all vertices have degree
at least bound or the graph becomes empty.

FindSubgraph2(V, k)
begin

threshold := n/ f(n);

bound := k;

while V # @ and there is a vertex of degree less than bound do

begin

S := {v ! deg(v) < bound};
if |S| > threshold then

V:=V-8;
else
begin

bound := bound /4;
threshold :== threshold / f(n);
end
end
end.

Theorem 4.5. If HDS(C) is nonempty, the algorithm finds a subgraph with minimum
degree at least ,{"_’“iikv:-)j' v in O(f(n)lognlog) n) time.

Proof: A phasc is the gronp of iterations for which bound and threshold have fixed values.
There are l()g”") n phasces, since the value of threshold is veduced by a factor of f(n) at the
(’:,). When a phase ends, less than threshold
vertices have degree less than bound, so the minimum degree of the subgraph that is found

is the value of bound when threshold = 1, which is p X . When a phase begins,

end of cach phase and threshold is initially 7

there arc less than f(n) - threshold vertices of degree less than 4 - bound. It follows from
Lemma 4.4 that at most g (n) - threshold vertices are removed by removing vertices of
degree less than bound. Since at least threshold vertices are removed at cach iteration, there
arc at most .‘}f(n) iterations per phase. Ilence there are at most 3 f(n) l0g ;(,,) 1 iterations
altogether. An iteration takes O(logn) time, so the algorithm takes O(f(n) log nlog () n)
time.

If different values are used for f(n) an interesting time/performance trade off is ex-
hibited. When f(n) = logn the algorithm is in N C and a subgraph with minimum degree
O(dn~), for any ¢ > 0 is found. Time and performance figures are given in the table
below. The time is given as the total number of iterations, neglecting the factor of %

53

-‘. Y '.';'.' L R » _f'.l. PR RSN '._ AP o \.

A N NI IR AN RN AT a7 AT A

A

"
i
; <
.‘
N !
p Iterations Approximation Factor “
¥ {
’ fln) | f(n)logsyn glok g] 2
: nl/k knt/k 4k—1 :
k 4*logn 1 1/k ;:
o 4 2k an'/ _ Ny
o k log* ' ' n 1, 2/k log log J
* lOg n kKloglogn Zn/ plonn -
::: 2\/!031; 2 logmn]og'r-z }4\/ln;gn :
- -
:: Time/performance relationship -
4.5. Finding a Maximum Density Subgraph i
9
o An alternate approach in constructing a subgraph with high minimum degree is to by
- look for a mazimum density subgraph. The results that we get by this approach are o
0 stronger than the previous results for certain cases, although the resulting algorithius are -3
probabilistic. The denstly of a graph is the ratio of the number of edges to the number
Y of vertices, so a maximum density subgraph is an induced subgraph for which this ratio is ”
- as large as possible. We denote a maximum density subgraph of the graph G by MD(G) =
& . . N . . -
- and the maximum density by M D(G). Our first leinma shows that a maximum density by
. subgraph has high degree. -
§ Lemma 4.5. A maxinuun density subgraph of G has all vertices of degree at least M D(G).
‘ Proof: If the maximum density subgraph had a vertex of degree less than M D(G), then '
~ the density would be increased by deleting that vertex. .
. o
The maximum density subgraph is related to the optimization problem discussed in '
N the previous section. Computing the value of the maximum density subgraph gives an
T approximation of H{DS(G) that is guaranteed to be within a factor of two. ¥
" Lemma 4.6. 2MD(G) > TIDS(G) > MD(G). -
N s

Proof: Let I be a subgraph of G with minimun degreec I/DS(G). Since H has at least

% |H| HIDS (G) edges, its density is at least ,—;_1‘\1_175'_(0). The density of H is no greater than =

: the maximum density, so 2MD(G) > HDS(G). Lemma 4.5 implies that JIDS > MD.)

.,

The minimum degree of a maximum density subgraph can differ from 1IDS(G) by a -
factor of two. An example of such a graph is:

i}

- Y
< ~
I
-: ?,
o rc
h
.. The value of IDS(G) is two, while the minimum degree of & maximum density subgraph]
N is just one. -
;.
_ L

The maximum density subgraph can be constructed by an RNC algorithm. The
algorithm for constructing a maximum density subgraph relies on a reduction due to
Goldberg [Go|, which reduces finding a maximum density subgraph to a unit capacity
network flow problem. The flow problem is solved using the techniques of [KUW).

Theorem 4.6. The problem of finding a maximum density subgraph can be reduced in
log-space to the problem of finding a maximum flow in a unit capacity nctwork. |}

Corollary 4.1. A maximum density subgraph can be found in RNC. i

There is a slight difference in the types of approximations achieved by our two algo-
rithms. The first approximation constructs a graph which is a supergraph of HDS(G).
The maximum density subgraph is an approximation to HDS,(G), where d = HDS(G).
The maximum density subgraph is not necessarily a supergraph of /DS ,(G). In the fol-
lowing example, /DS 4(G) is the entire graph, while the maximum density subgraph is
just the component on the right.

4.6. Number Problems

One class of problems where approximation is particularly important is number prob-
lems. A number problem is one in which arbitrary sized integers can be part of the problem.
For example, the numbers could he weights of edges or coellicients of lincar constraints. It
is quite common for nnmber problems to have natural approximations. For problems that
have an objective function which is being opimized, an approximate solution is one that is
close to the optimum. Number problems can be approximated in other ways as well. For
example, an approximate solution to a packing problem could be one where the constraints
arc violated by a small amount. Some number problems can be solved efliciently if the
numbers are small. Problems of this type can often be approximated by modifying the
problem by truncating the values, solving the modified problem exactly, and then relating
the solution of the modified problem to an approximate solution of the original problem.
In this section we give a couple of examples of problems where this technique is used in
parallel approximation algorithms.

The brst problem that we look at is network flow. This problem illustrates how the
difficulty in a problem can be caused by the presence of large numbers. The problem of
determining a maximum flow in a network is P-complete [GSS). The I-completeness proof
uses large integers as capacities to encode the circuit value problem. Il the capacities are
bounded by a polynomial in the number of edges, then the problem can be solved in RNC
[KUW]. We show that for every ¢ > 0, a flow that differs by a factor of at most 1 + ¢ from
the maximum llow can be found in RNC.

B AAA LSS
X0

|

N A

R

L]
S

Yo

I 4
i

AP
'n"l_"," “i Pt}

AT A Y G]
(A AN

v

E

»
e
o .

r't
0L, 8y 4 4

~ v
L

.
]
.

..-
4
4y-2

‘R s
MMM

-y
,e
A

Shh

Sl

Theorem 4.7. For any € > 0, maximum flow can be approximated to a factor of 1 4-¢ by
an RNC algorithm.

Proof: Let G = (V, E), [V| = n, be an instance of network flow with edge capacities c;
for each e; € E. Supposc that the maximum flow has size f. We give an RN C algorithm

that finds a flow of size f where]f - f‘ < ¢f. The basic idea in the approximation

algorithm is to truncate the values of the edge capacities so that they can be represented
by numbers with O(log n--log ’1) bits. The modified flow problem can then be solved using
the Karp-Upfal-Wigderson matching algorithm.

IFirst we need bounds on the maximum flow f. Let ¢ be the maxinmum capacity such
that there is a path from s to ¢t using only edges of capacity at least ¢. The network must
have a cut that is made up of edges with capacity at most ¢, so f < n%c. Since there is
a path from s to ¢ with edges having capacity at least ¢, ¢ < f. Since the flow is at most

nZc, there is a maximum flow where no edge carries flow of more than n?

¢, so any edge

with capacity greater than n%c can be replaced by an edge with capacity exactly n’c.
Let 7 = max(0, [log o5 I) We now create a new network with capacities ¢; =
y [¢:,~2"JJ. This is setting the j least significant bits of each capacity to 0. Since the
largest capacity is at most ¢n?, the number of significant bits in the modified capacitics is
at most [log cn'z] -3 < [log cn2] - '[Vl()g :T'TJ <1+ 4logn + log (l The problem can then
be solved in O(l()gk nlog 'l) time to get an approximate flow f The most that the approx-
imate flow f could differ from the original flow fis f -- f <6 < n? 55 e <ef.

Thus the algorithm achieves the desired approximation.

A sccond number problem that can be approximated is list scheduling. This is a
simple scheduling problem that involves scheduling jobs on two processors. The problem
is:

Given a list of jobs 7y, ..., 7., cach with an exccution time ((7,) € Z ', construct

a two processor schedule such that 7, is started no later than 3,4 and there is no

idle time until after all jobs have been started.

A list schedule can be computed by considering the jobs in order and assigning a job to
the first processor that becomes available. The problem of computing a list schedule is
P-complete {HHM1]. The P-completeness proof requires the use of large numbers for the job
times. The computation of a circuit is encoded by the times that the jobs are scheduled,
with certain bits of the times corresponding to the values of the gates. [However, the
problem can be solved by a fast parallel algorithm if the numbers are small. Helimbold and
Mayr [1IM1] have shown that if the job times are bounded by L(n), then a schedule can
be computed in O(log L(n) log n) time using O(n?) processors.

For list scheduling, we define an approximale solution to be a schedule that has the
same first come, first served property as a list schedule, but we allow idle time between
the jobs. ‘The smaller the total idle time, the better the approximation. Using an NC
algorithm to compute a list schedule for problems with small job times, we can coustruct
an NC algorithm to approximate list scheduling with the idle time an arbitrarily small
fraction of the schedule length.

N
L Theorem 4.8. For all ¢ > 0, list scheduling can be approximated by an NC algorithm 3
such that the proportion of the idle time is less than e. N
v Proof: The algorithm for approximating a list schedule rounds the job times up so that .'1}
M, they are mu'tiples of 2% with O(log n) significant bits and then solves the modified problem ~
b exactly. Let j7,...,7, be a list of jobs with job times ((3;), and let ¢ > 0. Let ¢t be ;
s the largest of the job times. If ¢ < ™, the problem can be solved exactly in NC, so P
suppose t > ". Suppose 2k < ';: < 2kt1 We create a modified problem with job times)
i(3:) = 2¢ [1(7.)27%]. The modified problem can be solved exactly, and then the jobs of the N
original problem can be scheduled at the times of the modified problem. The idle time after ~
o job j; is run is at most £(7;) - t(5) < 2*. The total idle time is at most n2* < n% = te. ;'.
Since the length of the schedule is at least t, the proportion of idle time is at most e. .
|
M The avproximation algorithms for nctwork flow and list scheduling both depend on -
N being able to solve the problems efliciently when the numbers are small. However, some 9
N problems remain difficult when the nnmbers are small. In the theory of NP-completeness, a n
. distinction is made between weakly and strongly NP-complete problems in order to classify Y
’ number problems. If an NP-complete problem remains NP-complete when restricted to #,
2 instances of the problem involving only small numbers, it is NI>-complete in the strong by
N sense, while if it can be solved in polynomial time when the numbers are small, the problem >
N is NP-complete in the weak sense. We can make the same distinction for P-complete N
- problems. 23
- Definition 4.1. A P-complete problem is strongly P-complete if there exists a polynomial
3‘ p such tha! the problem remains P-complete when restricted to instances [with the largest E:
'$ number bounded by p(|1]). 4
! A P-complete problem that is not a number problem, such as the circuit value prob- s
] lem is P-complete in the strong sense, so the distinction is only interesting for number L
3 problems. An important example of a number problem that is P-complete iu the strong =
. sense is lincar programming. Lincar programming is a number problem since the coefhi- ::
: cients of the equations can be arbitrary integers. Cook has shown (see [HR]), that the :'.
[problem of determining il a set of lincar inequalitics has a solution is P-complete. This Y
problem remains P-complete when the coeflicients are restricted to +1 and -1, so linear Py
\ programming is P-complete in the strong sense. In light of this result, a fast parallel ap- 0
& proximation for lincar programming is unlikely. In the next section we present another ~4
- strongly -complete problem. L
\ 4.7. First Fit Bin Packing
~ T
)5 In this section and the next, we examine the problem of computing a first fit decreasing '
W (FI'D) bin packing. We show that the problem is strongly P-complete, and that the
. problem can be approximated in a reasonable sense. The bin packing problem is: \
': Given a list of items U = uy,...,u, with sizes s(u;) < 1 for u; € U, find an :-'
» assignment of the items to unit capacity bins such that the number of bins used :
l‘ P
X 57
.
-;.r__.r .-4_-"..."__.-_4-: e ~\.-,{ :." :‘_~."~.;xfs’-.:-.::-.'°- T T T T e T '; ‘\' el :: AR, S :: S
AP P YU S P B S P e T e A

is as small as possible. The sum of the sizes of the items assigned to a bin must

be at most one.
For ease of exposition, we refer to s(u;) just as u,. Bin packing is a well known NP-complete
problem [GJ3]. Sequential approximation schemes to bin packing have been developed and
extensively analyzed [GJ3]. An important approximation algorithm for bin packing is the
Brst fit algorithin. First fit considers the items onc at a time, and places cach item in the
first bin with enough room. If the list is sorted so that the items are non-increasing, then
the algorithm is first fit decreasing (FFD), and if the list is sorted so that the items are
non-decreasing, the algorithm is first fit increasing (FFI). An FFI packing is within %Z of
optimal and an FI'D packing is within l!-)! of optimal.

P

A

Py A

-
P e

The result of this section is that it is >-complete in the strong sense to compute an
FFD packing. The problem of computing an FFID) packing is a number problem, since the
items may have arbitrary sizes. However, our result shows that this problem is diflicult
even if the item sizes are “small.” Many P-complete number problems, such as network flow
and list scheduling are only P-complete in the weak sense. This is one of the first results
that shows a number problem to be P-complete in the strong sense. The result shows that
the source of the difliculty in computing an FIFD) packing is from the arrangement of items
in the bins as opposed to being from the numbers involved in the problem.

18 o

The strong P-completeness result suggests that a scaling approach is not likely to lead
to a good approximation to an I'FP) packing. However, in the next section we show that a
reasonable approximation to an FFD packing can be computed by an NC algorithm. We
show that il the item sizes are bounded below by a constant, then the FIFD packing can
be computed in O(log n) time. This gives us an NC algorithm to compute a packing that
obeys the same performance bound as an FI'D packing.

Theorem 4.9. The problem of computing a first lit. decreasing packing is strongly P-
complete.

Proof: The proof is a reduction from the monotone circuit value problem. The reduction
has two stages. The first stage reduces the monotone circuit vidue problem to computing
an II'D packing into bins of variable size (the sizes of the bins are specified as part of the
instance). The second stage reduces computing an FIFD packing into bins of variable size
to computing an I'I'D packing into unit capacity bins.

Let 8 = By,...,8, be a monotone circuit. We transform g into a non-increasing list
of items and a list of bins. There is a distinguished item 4 and a distinguished bin b. ‘The
item 4 is placed in b by a first fit packing il and only if the output of the circuit is true.

FFor each gate there is a list of items and a list of bins. The items and bins are ordered
by gate number, so if 7 < 7, the items and bins for gate f; come belore the items and bins
for gate 3,. Among the items for gate B, are two pairs of items, Ty, T} and F,, I; which
indicate the values of the inputs to the gate. Exactly two of these items are placed by the
first fit packing in the bins for g,, the other two are packed in bins lor lower numbered
gates. The two that are placed in the bins for A3, give the value for the inputs to the gate.
If the output of the gate f; is connected to the gates f; and fi, the bins for 8; get cither
Ty, Tx or Iy, ¥y, depending upon the value of the gate. If 75 and Ty are placed in the bins
for f;, then the gates 3; and fi receive false values for f;.

Ce e e e -_’h..‘i‘\- L e
U wmAS '.' LS AL T CPa S *
PO 2N AL AT P A

6,' — 4e
6,‘ — Se
&; 5
T; T,
i faa]
i .
F i~ e &; — 8¢ 6; — Be
é; 26, —8e 26, ~10e &; +§; 6y + i

—8¢ --8e¢
Packing for AND gate 3, with one true input and one false input

Suppose there are n gates in the circuit. Let §; =1 — —i- and ¢ = The items

1
ntl T 9(n+1)"
for gate B; have sizes:
6,’, 6,‘, 6,‘ - 46, 6,‘ - 46, 5,' - 46, 6,' - 56, 6.‘ - 56, 6,’ - 8(, 6,‘ -- 8e.

The first four items are T;, Ty, Fy, and F; respectively. The list of items is non-increasing.
The bins for an AND gate §; with outputs to 8; and i have sizes:

6;, 26, 8¢, 26;—-10¢, 6;+6; —8c, &+ b — 8e.
The bins for an OR gate §; with outputs to 8; and f; have sizes:
26; — 8¢, 6;, 26;—-10¢, 6;+6; — 8¢, 6 + 6 - 8e.
The first two bins evaluate the value of the gate and the last three bins propagate the
value. Packings of the AND gate for the inputs T°C and TI® are illustrated in the figure

below. The OR gate is similar. For gates B, that have a constant input, cither a T; or a
F; is deleted to give the gate the right input.

6; — 8¢
Gi — 8e 6j — 4e
Fj b, — 4e
Py
6 5
T T
) ' bi — e 6; — 5e 6; — 5¢
& 26, —8e 26, ~10¢ 6 &; 6+ b

—8¢ —-8e

Packing for AND gate §; with two true inputs

59

©
LA RER
ey

*'.

A

) '.
e

LY

7

.

CORAR

-y &
b "
.

r

P I o)
%7

l' l.

AR &

R

U
PN Y

- v

roes,
v"","
7

5

2

T

To finish the proof, we give a reduction of FFD packing with variable bin sizes to an
4! FFD packing with unit capacity bins. Let u;,...,u, be a list of items and by,...,b, be
a list of bins. We construct a list of decreasing items vy,...,vs, which when packed into

',:: bins of size C leave space b; in the i-th bin. The packing of u,,...,u, into by,...,b, is
ﬁ transformed into packing vy,...,va,,uy,...,u, into bins of size C. The sizes can then be
o normalized to give a packing into unit capacity bins.
< Let b be the largest of the b’s and C = (2r 4 1)b. Without loss of generality we
2 assume that all the b;’s have size greater than 0. The sizes of the items are:
2
2 vt_:{(:—z:b»-b,, if i <r;
oo C — b, if1>r,
. The items v; and vg,4;_; are put into the z-th bin, leaving b; empty space. The list
-7 vy,..., V2, is NON-increasing.
:-ﬁ The largest number involved in the reduction is polynomial in the size of the circuit,
\ so the prool shows that it is strongly P-complete to compute an FIFD packing. |
N
¥
‘l
4.8. Approximating an FIFD packing
< Although it is probably not possible to compute a first fit decrcasing packing in NC,
Lo we can approximate a first fit decrcasing packing in a reasonable sense. We show that if
": the sizes ol all of the items are al least ,'V, then an FIFD packing can be computed in NC.
Thus we can lind a packing that agrees with IFIFD on all of the big items. As a corollary to
our result, we show how to construct a packing in NC that obeys the same performance
¥ bound as I'IFD.
;. Our algorithm for computing an FI'D packing of iteins of size at least ,t is relatively
*- simple. The basic idea is to decompose the problem into a series of packing problems that
> have a simple structure. We show that the number of subproblems is independent of the
. number of items in the list, although it does depend upon k.
: The FID algorithm is broken into phases, with the 7-th phase packing all of the items
"; in the interval [, ;%5). The bins which arc filled to at least 1 — 5,'; cannot be of use
Y in the j-th phase, so they are ignored for the phase. The bins which are filled to less than
) 1 - 2,!1‘1‘ consist of groups of consecutive bins in which the amount of remaining space
~ is increasing, as is illustrated in the figure below. We prove that the number of groups
:j is bounded by a constant depending on j but not on the number of items. The packing
.\': into groups is donc sequentially, first by packing into the first group, then into the second
& group, and so on. The routine Pack computes the packing of items of size [;, , 2,5.-;) into a
list of increasing sized bins in O(log n) time. "The details of the routine Pack are described
. below. The algorithm FED runs in O(logn) time since the number of phases and the
; number of calls to Pack is constant.
2 60

\ D S S
N SNy \:'-.:‘\’a"-.:;.' ~
Y, A‘. 3y I VAN A 19,0) W

Bins filled to at most 1 — 2—,%—,—

FFD(U = u1,...,ua);
begin
for j—1to k—1do
begin
Uje—{u.'EUlz,—'“—<u,-§%};
Let B' be the sublist of bins filled to less than 1 — 5—,—1-,—;;
Divide B' into groups of consecutive bins such that the empty space in each group is
increasing.
for cach group G do
Pack(U;,G);
end
end.

The major subroutine of onur bin packing algorithm is to pack a decreasing list of items
U =wuy,...,u, with u; € [2% , ;2—;';,-) into an increasing list of bins. The rcason that this
packing problem is casy to solve is that the resulting packing has a simple structure. The
number of items placed in the bins increases with bin number. The routine consists of a
number of phases. The 2-th phase packs consecutive bins that can fit 7 items cach. The e
items arc taken from the start of the list and packed < per bin until a bin is encountered that '
fits 2+1 items. Some of the bins that reccived 7 items can accommodate one additional item
from further down the list. These items are added and then the next phase is run using the
remaining items and the remaining bins. In the example below, the items uy,...,ug are
placed in consecutive bins by the sccond phase, and the item uy4 fits in the bin containing <
ug and ug. When packing items in the range [-217, 2,%), there are fewer than 27+! phases
since no more than 274! - items can be placed in a bin. A phase can casily be implemented
to run in O(logn) time.

Pack(U = uy,...,un,B =by,...,bm)
begin
for : :=1to k do
begin
Find s such that u,)iy + -+ % < by < ug, 1ir1+ o+ %y for r < s and
Yeipt + b Uiy Shaiae
X Place the items uy,...,u, into the bins by,...,b,.

aﬁfﬂ%ﬂ |

-

EALLLLLS,

CaklnCwcrs
[N

.

‘.
[Sl v v]

A e Y

' 4

AN SSN

e’ P N
.'."—l-'/'J.

’;-

AR
R R]

b

»

. - l".’.«l{i"&“

PL 2SR L1Y,

Ujo
u
u, 14
U3
Us
Us uy
Us ug
Uu
” 12
Ug
Ug
Uy

An example of a packing performed by Pack

for each item uj, 7 > st + 1
Find the first bin b,, r < s that has enough space remaining for u;.
Add the additional items to the bins by, ...,b, by placing items in the first possible
bin, pushing overflow items towards the higher numbered bins.
Remove the placed items from U and the filled bins from B and renumber the lists.
end
end.

The following lemma establishes that Pack computes a first fit packing.

Lemma 4.7. Let U = u,,...,u, be a decrcasing list of items with u; ¢ [71,, 2»111—,) and
D = by,...,b,, be an increasing list of bins with b,, < 1. The routine Pack computes a
first fit decreasing packing of U into B.

Proof: The potential place for the algorithm to be incorrect is in the placement of the

s groups of ¢ ilems cach in the first s bins of B. Suppose an item u' that is placed in a

bin b, r < s actually fit in a bin b/, ¥ < 7. 80 Upigy + -+ + Uryy) 1y’ < byl But,

Urip1 + o F Up(ign) T Urir) 41 S Uripr o0 F Ui + u' < b < b,. llence, r > s.
1

In order to prove that our algorithm for constructing an FI'D packing of items of
size at least ,lc is a fast parallel algorithm, we must show that the number of groups of
bins encountered in the algorithm is bounded by a constant. We prove a slightly stronger
result than we need by showing that the constant is in fact only polynomial in k. Thus
our algorithmn remains an NC algorithm even if k is some slowly growing function in n,
such as logn.

We must now show that the number of groups of consecutive bins that the algorithm
considers when packing items of size greater than ,t is bounded by a constant Cy. Our
proof shows that this constant is O(k?). We prove the theorem by keeping track of the
number of intervals of bins of increasing size at the start of cach phase. We can bound the
increase in thie number of intervals by considering in some detail the way items are packed
into the bins.

62

~J.

ML A NN R Y

Lk PAAANIK

Let U = uy,...,u, be the list of items and B = by,...,b,, be the list of bins. We
denote the amount of space left in bin b; at a given time by s(b;). This value depends
upon the phase of the packing. The projection of a packing onto a subset B’ of the bins
is the sct of items U’ that are placed into the bins B’. It is a folk theorem of bin packing
that U’ is packed into B’ by a first fit packing in exactly the same manner as the items U’
are packed in the full packing. A %-projection is the projection of the packing onto the
set of bins b; such that s(b;) > 2% In the j-th phase, when we pack items in the interval
[51;, 5,17), we only consider the #-projection of the packing up to that point.

The major portion of this proof is accounting for groups of bins with increasing space.
Basically, an interval is a set of consecutive bins with remaining space increasing. However,
for bookkeeping reasons, we break up thec intervals at powers of two, so all bins of an
interval have space in [2%, 21%) for some j. We also relax the condition that the bins are
consecutive; we allow some bins with less space to be between the bins of the interval.
Finally, we insist that our intervals are maximal, so that bins cannot be added to an
interval without violating one of the defining properties.

Definition 4.2. A g,—-intcrval is a set of bins b ,...,b; such that:
1. 2—,1ﬁ < s(b;,) < s(by,) <o <s(by,) < §l;
2. Let by,...,b,, be the bins of the ;%l--projection of the packing. The image of

bi,s...,b;, is a set of consecutive bins b,, ..., bs1r_1.

3. s=1ors(b,_,)> s(b,).
4. s+r—1=mor s(bys,) > —217 or s(bysr) < s(bssr—1).

An important detail in our definition of an interval is that we allow intermediate bins
to have less space than the bins of the interval. The figure below shows a situation that
. m | . . . - g
might occur. The 5; interval is separated by an interval of bins with much less space. The
reason that we allow this in our definition, is that we do not want to subdivide the bins

too carly, or clse we generate too many intervals.

| ™

27 F1

Qe

~|

Each ;j'}-intcrvnl is assigned a weight of 272, We show that the sum of the weights
of the intervals is O(47) at the start of phase 3. This allows us to bound the number of
groups of consccutive bins that we consider in the algorithm.

APy

® v v s 1 e ®_0
>

. ..'la',)'

T v
.

‘ NS Y f

Ty &ty ity fy,

AR

&

- e
-
-

r

B

l’ »‘ t‘

Dithe

3
T ata

4 &
f

A
o

“ d.“l.\:.' ‘..

a

K
ey

1)
S

et]
o,
Ly

f..f.:“.u‘ &

e
. -
LARN

.
a

..
0tata

L

»
-

We begin by examining the packing of items in the range |55, 5,—1:,) into a set of
consecutive bins with increasing space in the range [2, , 2,1). Here, we assume that the
bins are fully packed, meaning that after the items are placed, none of the bins have more
tha.n - space. This is the type of packing that is performed by the routine Pack described
above

The items that are packed can be divided into two types of items, the forward items
and the fill-in items. The routine Pack places itemns 7 per bin from the front of the list
until a bin i1s encountered that can hold at least r + 1 items, then the routine looks ahead
in the list of items and finds additional items that can fit with the items placed r per bin.
The items placed in groups from the front of the list are the forward items, and the items
placed by looking ahead in the list are the fill-in items.

If we just look at the forward items, then the bins are divided into runs of bins with
increasing space. The set of bins that receive the same number of items forms a run. The

. gt J 1 R « .
number of runs formed is at most gT — -2—,2,—, = gg, The amount of space left in a bin is
at most 21, , so the weight of each run is less than Zﬂ>]- 279 = ‘32"21 The total weight

. } — 29 -
is less than %%% 2 = 2,2J < 272 if 7 > 1. Thus the weight is not increased by the
forward packing.

We now consider packing items of size [51;, 5;1,—1) into an increasing list of bins of size
(55, 557). This covers the fill-in items.
Lemma 4.8. The number of ~-mtcrvals genemted by a packing of items of size [2J ' 5 77)
into an interval of size [2—,», 2,1, ;) Is at most % 2,

Proof: Let 51, e ,8,,, be the 2—1,. -projection of the packing. A reversal occurs when an
item u; ;1 is placed in a lower numbered bin than the previous item u,. ISach ,_ -interval
((,xccpl possibly the first one formed) begins with a reversal. Let u; ;| be the first item of

-2‘ -interval, and suppose it was placed in the bin b.. There is at least ,2-,-[;-, space left in b,

al’l.cr 1,4 1 15 placed. Since u; did not fit in b,., Uigy —2‘-%-;- < u,. Thus, cach ;!-interval

other than the Grst one accounts for a gap of more than ;' in the item sizes. Since the

2:1

diflerence bctwacn the first and the last item is at most 2, "1, the number of ,;;-intcrvals

is at most 2 5;. |

The weight of the resulting packing is bounded by E.>] = 29-2% —9.2-2 The weight
is at most double the weight of the original interval.

The j-th phase of the algorithin packs the items in the range [517, 2-,‘.—,), so for the
j-th phase, we can neglect all of the bins with space at most "z.:l‘ v+ Suppose the weight

al the start of phase j is w;. Since the . -intervals have weight 2727 there are at most

23

2%y, intervals to consider. Iowever, since these intervals might overlap, some of them

may have to be split. Il a il—,-intcrval cencloses a 'v,;[-intcrval, (z < 1 <j), then we split the

outer interval. The number of intervals that are added is bounded by the original number

of intervals. At most 2 - 227w, intervals need to be considered in packing the j-th phase.
The packing of the forward items in the ,;,-intcrvals (! < 7) does not increase the

total weight, except when a bin is only partially filled. At most one bin is partially filled

by a phasc, so this adds at most a constant to the weight. (The constant is in fact at

64

pC it ng 4

most %) In computing the weight, the forward packing can be considered before the:
splitting of intervals, since the forward packing cost docs not depend on the bins being
consecutive. The splitting of intervals can double the number of ~—1—-intervals so this can
double the weight. The weight is again doubled by packing into thc ——-mtervals Hence
w;p < 4w, + " . Since wy = 1, we have w; < 4’ '

When the |tcms packed .\ll have size at least %, there are at most log k phases. The
weight is then O(k?) at the end of the algorithm, so the number of groups of bins considered
in the final phase is O(k*). Thus, we have the following theorem:

Theorem 4.10. The algorithm FFD computes a first fit decreasing packing of items of
size greater than i in O(logn) time.

We can use our algorithm to construct a packing that obeys the same performance
bound as FFD. The algorithm for doing this combines a first fit decrcasing packing and
a first fit increasing packing. The algorithm first packs all items that are in the interval
(1, é) using a first fit decreasing packing, and then packs the remaining items using a first
fit increasing packing. Let Lp(I) be the length of the first it decreasing packing and
OPT(I) be the optimal packing for a list I of items. Iirst we show that this packing is
relatively close to optimal.

Theorem 4.10. The length of the composite packing L (I) satisfies

6
Lo(T) < max(L(T), JOPT(I) +1) < %op'r(z) +4

Proof: Let L be the length of the FFD packing of the items with size greater than é
Clearly L << Lp(1), so if all the items are placed in the Grst L bins, then L (1) < Lp(1).
If more than L bins are used, then all bins except for possibly the last one is filled to at

least g, so Lo (1) < gOI’T(L) 4 1. 1

The first lit increasing part of the packing can be done fairly casily with a fast parallel
algorithm. The following lemma sketches how an FI'l packing is computed.

Lemma4.9. A first fit increasing packing into variable sized bins can be computed in NC.

Proof: The property that an FFI packing has that makes it easy to compute with a fast
parallel algorithm is that the order of the items in the bins is the same as the initial order
of the items in the list. The key part of computing the FFI packing is to identify the first
item placed in cach bin. One way this can be done is to compute for cach bin b; and cach
item uy, the first item available for bin b, asswming that u, is the first item available
for bin b;. The first item for each bin can then be computed using path doubling. This
algorithm can be implemented to run in O(log n) time using O(n?) processors. |}

The composite packing is computed by partitioning the items into the items of size at
least ('; and the items ol size less than (') The first group is packed using the FFD algorithm,
and the second group is packed using FFL A similar parallel algorithm for computing a
packing that obeys the same performance hound as I'I'D has been independently discovered

by Warmuth [War|.

65

; -.'. o’ RO

A
v
=

-
g

SR

M
U
b

1!

LSS

. .), ey
. .:‘-' "5 .’l "n "‘ /L' P,

DN

i

o 4y 0, 4 5 Y

atatatss

CSLNENEAS

.
N

of” S

4.9. Discussion

The results on approximating P-complete problems are similar to approximation re-
sults for NP-complete problems. Our results in this chapter illustrate a number of points of
similarity. Our result on approximating the high degree subgraph problem shows that it is
possible to get tight bounds on the degree of approximation that is feasible by an N C algo-
rithm assuming that P # NC. This result parallels a number of results on approximating
NP-complete problems with parallel algorithms. Some P-complete number problems can
be solved in NC when the numbers involved are small. Efficient parallel approximation
schemes can often be found for problems of this type. Other number problems remain
difficult when they are restricted to instances that involve small numbers. The notion
of strong P-completeness captures this, being analogous to strong NP-completeness. The
problem of computing an FFD bin packing is strongly P-complete. This problem can still
be approximated in a reasonable sense, since an FFD packing can be computed in NC if
the sizes of the items are bounded below by a constant.

.......

LA

t-
» W
sy ~
<
. ‘ .
- >
" References “3
, [AHU] Aho, A. V., Hopcroft, J. E., Uliman, J. D., The Design and Analysis of Computer '3
j Algorithms, Addison-Wesley, 1974. .'
. n
b [B] Borodin, A., “On relating time and space to size and depth,” SIAM Journal of éf
L Computing, 6, 1977, pp. 733-744. ¢
9 [CKS] Chandra, A. K., Kozen, D. C., Stockmeyer, L. J., “Alternation,” JACM, 28, 1,
¥ January 1981, pp. 114-133. -
.: [CSV] Chandra, A. K., Stockmeyer, L. J., Vishkin, U., “Constant depth reducibility,” .:
‘ IBM Research Report RC9548, August 1982.
i [C1] Cook, S. A., “Towards a complexity theory of synchronous parallel computation,” -
: L’Enseignement Mathematique XX VII, 1981, pp. 99-124. N
. [C2] Cook, 8. A., “The classification of problems which have fast parallel algorithms,” =
. Technical Report No. 164/83, Department of Computer Science, University of Yy
Toronto 1983. ‘
E [CD] Cook, S., Dwork, C. “Bounds on the time for parallel RAM’s to compute simple
* functions,” Proc. 14th STOC, 1982, pp. 231-233. -
. :1’
o [DLR] Dobkin, D., Lipton, R. J., Reiss, S., “Linear programming is log-space hard for o
P,” Information Processing Letters, 8 1979, pp. 96--97.
_ [DKM] Dwork, C., Kanellakis, P. C., Mitchell, J. C., “On the sequential nature of unifi- "
'5 cation,” Manuscript, 1983. "
P
% [DC] Dymond, P. W., Cook, S. A., “llardware complexity and pai.dlel computation,” 1
Proc. 21st FOCS, 1980, pp. 360-372. >
-,E; [ET) Even, S., Tarjan, R. E., “Network flow and testing graph connectivity,” SIAM '-
- Journal of Comnputing, 4, no. 4 1975, pp. 507-518. .
p (E] Erdds, P., “On the structure of lincar graphs,” Israel Journal of Mathematics, 1 e
1963, pp. 156-160. i
" [FRW] Fich, F. E., Ragde, P. L., Wigderson, A., “Relations between concurrent-write
2 models of parallel computation,” Proc. 3rd PODC, 1984, pp. 179-189. NS
! N

' [FW] Fortune, S., Wyllic, J., “Parallclism in random access machines,” Proc. 10th
ACM STOC, 1978, pp. 114-118.

) [GJ1] Garey, M. R., Johnson, D. S., “The complexity of near-optimal graph coloring,”
N JACM, 23, 1, 1976, pp. 43-49.

o
) [GJ2] Garey, M. R., Johnson, D. S., “Strong NP-completcness results: motivations, o

examples, and implications” JACM, 25, 3, 1978, pp. 230-237. o
\ [GI3] Garcy, M., Johnson, D. S., Computers and Intractability: A Guide to the Theory]

.
G
&
hS

of NP-Completencss, 11. Freeman, San Francisco, 1978.

Goldberg, A. V., “Finding a maximum density subgraph,” Technical Report
UCB/CSD 84/171, Computer Science Division, University of California, Berkeley,
May 1984.

Goldschlager, L. M., “The monotone and planar circuit valuc problems are log
space complete for P,” SIGACT News, 9, 2 1977, pp. 25-29.

Goldschlager, L. M., “A unified approach to models of synchronous parallel ma-
chines,” Proc. 10th STOC, 1978, pp. 89-94.

Goldschlager, L.M., Shaw, R.A., Staples, J., “The maximum flow problem is log
space complete for P,” Theoretical Computer Science, 21 1982, pp. 105-111.

Helinbold, D., Mayr, E., “Fast scheduling algorithms on parallel computers,”
Technical Report No. STAN-CS-84-1025, Computer Science Department, Stan-
ford University, November 1984.

Helmbold, D., Mayr, E., “Two processor scheduling is in NC,” Manuscript, 1985.

Hoover, H. J., Ruzzo, W. L., “A compendium of problems complete for P,”
Manuscript, October 1984.

Hopcroft, J. E., Karp, R. M., “A n%2 algorithm for maximum matching in bi-
partite graphs,” SIAM Journal of Computing, 2, 1973, pp. 225-231.

Johnson, J. B., Venkatesan, S. M., “Parallel algorithms for minimum cuts and

maximum flows in planar networks,” Proc. 23rd FOCS, 1982, pp. 244-254.

Karloff, H., Shmoys, D., Soroker, D., “Efficient parallel algorithms for graph
coloring and partitioning problems,” Manuscript, 1984.

Karp, R. M., Upfal, E., Wigderson, A., “Constructing a maximum matching is
in random NC,” Proc. 17th STOC, 1985, pp. 22-31.

Karp, R. M., Wigderson, A., “A fast parallel algorithm for the maximal indepen-
dent set problem,” Proc. 16th STOC, 1984, pp. 266-272.

Kernigan, B. W., Lin, S., “A heuristic algorithm for the travelling salesman
problem,” Operations Research, 21, 1973, pp. 498-516.

Kruskal, J. B., “On the shortest spanning subtrce of a graph and the travelling
salesman problem,” Proceedings fo the American Mathematical Society, 7, 1956,
pp. 48--50.

Ladner, R. E., “The circuit valuc problem is log space complete for P," SIGACT
News, 7, 1 1975, pp. 583--590.

Lawler, E. L., Combinatorial Optimization: Nelworks and Malroids, llolt, Rine-
hart, and Winston, New York, 1976.

Lenstra, J. K., Rinooy Kan, A. 1. G., “Complexity of scheduling under prece-
dence consiraints,” Operations Rescarch, 26, 1978, pp. 22-35.

"l ol At N

O]
L]
J
L]
[]
»

[Lu]

[Lue]
[MV]

[PS]
[P]

[Re]
[Ru]

(Sc]
[Sm]

[T)
(V]

[VSBR|

[v]
[Wag]|

[War]

[Wy]

Luby, M., “A simple parallel algorithm for the maximal independent set problem,”
Proc. 17th STOC, 1985, pp. 1-10.

Lueker, G. S., Private communication.

Micali, S., Vazirani, V. V., “An O(y/|V]|E|) algorithm for finding a maximum
matching in general graphs,” Proc. 21st FOCS, 1980, pp. 17-27.

Papadimitriou, C. H., Steiglitz, K. Combinatorial Optimization, Prentice-Hall,
Englewood Cliffs, N.J.

Pippenger, N., “On simultanecus resource bounds,” Proc. 20th FOCS, 1979,
pp. 307-311.

Reif, J., “Depth first scarch is inherently sequential,” Aiken Computation Lab
Technical Report TR-27-83, November 1983.

Ruzzo, W. L., “On uniform circuit complexity,” Journal of Computer and System
Sciences, 22, 1981, pp. 365-383.

Schwartz, J. T., “Ultracomputers,” ACM TOPLAS, 2, 4, 1980, pp. 484-521.

Smith, J. R, “Parallel algorithms for depth-first searches: 1. Planar graphs,” To
appear, SIAM Journal of Computing.

Tarjan, R. E., “Depth-first search and linear graph algorithms,” SIAM Journal
of Computing, 1, 1972, pp. 146-160.

Tarjan, R. E., Vishkin, U., “Finding biconnected components and computing tree
functions in logarithmic parallel time,” Proc. 25th FOCS, 1984, pp. 12-20.

Valiant, L. G., Skyum, S., Berkowitz, S., Rackofl, C., “Fast parallel computation

of polynomials using few processors,” Aiken Computation Lab Technical Report
TR-17-82, May 1982.

Vishkin, U., “An optimal parallel connectivity algorithm,” RC 9149, IBM T. J.
Watson Research Center, Yorktown Heights, N. Y., 1981.

Wagner, H. M., “On A class of capacitated transportation problems,” Manage-
ment Science, 5, 1959, pp. 304-318 (cited by [PS)).

Warmuth, M., “Parallel approximation algorithms for one-diniensional bin pack-
ing,” Manuscript, 1984.

Whyllie, J. C., The Complexity of Parallel Computations, Phd. Thesis, Depart-
ment of Computer Science, Cornell University, 1979.

R
AL

.
LA

".'-{‘l l v,.

X

"

e e oN

.

"“:'; [N

. { A o o o oF S Shg
XY, AR

T

N R K

e e R ot

I e g v,

&
v

.-

T
fakl il a

R T A ac e SO ST ML AR

e L
. PR
(Y R LI

.

ELCIEIA .
o e e W T
" »

